Differential evolution (DE) algorithm has been proven to be a simple and efficient evolutionary algorithm for global optimization over continuous spaces, which is widely used in both benchmark test functions and realworld applications. Like genetic algorithms, differential evolution algorithm uses three typical operators to search the solution space: crossover, mutation and selection. Among these operators, mutation plays a key role in the performance of differential evolution algorithm and there are several mutation variants often used, which constitute several corresponding differential evolution strategies. By means of experiments, this paper investigates the relative performance of different differential evolution algorithms for global optimization under different differential evolution strategies respectively. In simulation studies, De Jong's test functions have been employed, and some conclusions are drawn.
Global Congress on Intelligent Systems978-0-7695-3571-5/09 $25.00
Differential evolution (DE) algorithm has been shown to be a simple and efficient evolutionary algorithm for global optimization over continuous spaces, and has been widely used in both benchmark test functions and real-world applications. This paper introduces a novel mutation operator, without using the scaling factor F, a conventional control parameter, and this mutation can generate multiple trial vectors by incorporating different weighted values at each generation, which can make the best of the selected multiple parents to improve the probability of generating a better offspring. In addition, in order to enhance the capacity of adaptation, a new and adaptive control parameter, i.e. the crossover rate CR, is presented and when one variable is beyond its boundary, a repair rule is also applied in this paper. The proposed algorithm ADE is validated on several constrained engineering design optimization problems reported in the specialized literature. Compared with respect to algorithms representative of the state-of-the-art in the area, the experimental results show that ADE can obtain good solutions on a test set of constrained optimization problems in engineering design
The Differential Evolution (DE) algorithm is arguably one of the most powerful stochastic optimization algorithms, which has been widely applied in various fields. Global numerical optimization is a very important and extremely dif-ficult task in optimization domain, and it is also a great need for many practical applications. This paper proposes an opposition-based DE algorithm for global numerical optimization, which is called GNO2DE. In GNO2DE, firstly, the opposite point method is employed to utilize the existing search space to improve the convergence speed. Secondly, two candidate DE strategies “DE/rand/1/bin” and “DE/current to best/2/bin” are randomly chosen to make the most of their respective advantages to enhance the search ability. In order to reduce the number of control parameters, this algorithm uses an adaptive crossover rate dynamically tuned during the evolutionary process. Finally, it is validated on a set of benchmark test functions for global numerical optimization. Compared with several existing algorithms, the performance of GNO2DE is superior to or not worse than that of these algorithms in terms of final accuracy, convergence speed, and robustness. In addition, we also especially compare the opposition-based DE algorithm with the DE algorithm without using the opposite point method, and the DE algorithm using “DE/rand/1/bin” or “DE/current to best/2/bin”, respectively
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.