We present XIndex, which is a concurrent index library and designed for fast queries. It includes a concurrent ordered index (XIndex-R) and a concurrent hash index (XIndex-H). Similar to a recent proposal of the learned index, the indexes in XIndex use learned models to optimize index efficiency. Compared with the learned index, for the ordered index, XIndex-R is able to handle concurrent writes effectively and adapts its structure according to runtime workload characteristics. For the hash index, XIndex-H is able to avoid the resize operation blocking concurrent writes. Furthermore, the indexes in XIndex can index string keys much more efficiently than the learned index. We demonstrate the advantages of XIndex with YCSB, TPC-C (KV), which is a TPC-C-inspired benchmark for key-value stores, and micro-benchmarks. Compared with ordered indexes of Masstree and Wormhole, XIndex-R achieves up to 3.2× and 4.4× performance improvement on a 24-core machine. Compared with hash indexes of Intel TBB HashMap, XIndex-H achieves up to 3.1× speedup. The performance further improves by 91% after adding the optimizations on indexing string keys. The library is open-sourced.
1
This paper proposes a super capacitor energy storage-based modular multilevel converter (SCES-MMC) for mine hoist application. Different from the conventional MMCs, the sub-modules employ distributed super capacitor banks, which are designed to absorb the regenerative energy of mine hoist and released in the traction condition, so as to improve energy utilization efficiency. The key control technologies are introduced in detail, followed by analysis of the configuration and operation principles. The feasibility of the proposed SCES-MMC topology and the control theory are also verified. Simulation results show that SCES-MMC can adapt to the variable frequency speed regulation of the motor drive, which shows good application prospects in the future for mediumand high-voltage mine hoist systems.
New drug delivery system (ZnO@CMS) of the redox and pH dual-stimuli responsive based on colloidal mesoporous silica nanoparticles (CMS) has been designed, in which zinc oxide quantum dots (ZnO QDs) as a capping agent was conjugated on the surface of nanoparticles by amide bonds. The release behaviour of doxorubicin (DOX) as the model drug from ZnO@CMS (ZnO@CMS-DOX) indicated the redox and pH dual-stimuli responsive properties due to the acidic dissolution of ZnO QDs and cleavage of the disulphide bonds. The haemolysis and bovine serum albumin adsorption assays showed that the modification of ZnO QDs on the mesoporous silica nanoparticles modified by mercapto groups (CMS-SH)(ZnO@CMS) had better biocompatibility compared to CMS-SH. The cell viability and cellular uptake tests revealed that the ZnO@CMS might achieve the antitumour effect on cancer cells due to the cytotoxicity of ZnO QDs. Therefore, ZnO@CMS might be potential nanocarriers of the drug delivery system in cancer therapy. The in vivo evaluation of ZnO@CMS would be carried out in future work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.