Numerals that contain much information in financial documents are crucial for financial decision making. They play different roles in financial analysis processes. This paper is aimed at understanding the meanings of numerals in financial tweets for fine-grained crowd-based forecasting. We propose a taxonomy that classifies the numerals in financial tweets into 7 categories, and further extend some of these categories into several subcategories. Neural network-based models with word and character-level encoders are proposed for 7-way classification and 17-way classification. We perform backtest to confirm the effectiveness of the numeric opinions made by the crowd. This work is the first attempt to understand numerals in financial social media data, and we provide the first comparison of fine-grained opinion of individual investors and analysts based on their forecast price. The numeral corpus used in our experiments, called FinNum 1.0 1 , is available for research purposes.
Selecting appropriate words to compose a sentence is one common problem faced by non-native Chinese learners. In this paper, we propose (bidirectional) LSTM sequence labeling models and explore various features to detect word usage errors in Chinese sentences. By combining CWIN-DOW word embedding features and POS information, the best bidirectional LSTM model achieves accuracy 0.5138 and MRR 0.6789 on the HSK dataset. For 80.79% of the test data, the model ranks the groundtruth within the top two at position level.
This paper presents the NTU NLP Lab system for the SemEval-2018 Capturing Discriminative Attributes task. Word embeddings, pointwise mutual information (PMI), ConceptNet edges and shortest path lengths are utilized as input features to build binary classifiers to tell whether an attribute is discriminative for a pair of concepts. Our neural network model reaches about 73% F1 score on the test set and ranks the 3rd in the task. Though the attributes to deal with in this task are all visual, our models are not provided with any image data. The results indicate that visual information can be derived from textual data.
With the aid of recently proposed word embedding algorithms, the study of semantic relatedness has progressed rapidly. However, word-level representations are still lacking for many natural language processing tasks. Various sense-level embedding learning algorithms have been proposed to address this issue. In this paper, we present a generalized model derived from existing sense retrofitting models. In this generalization, we take into account semantic relations between the senses, relation strength, and semantic strength. Experimental results show that the generalized model outperforms previous approaches on four tasks: semantic relatedness, contextual word similarity, semantic difference, and synonym selection. Based on the generalized sense retrofitting model, we also propose a standardization process on the dimensions with four settings, a neighbor expansion process from the nearest neighbors, and combinations of these two approaches. Finally, we propose a Procrustes analysis approach that inspired from bilingual mapping models for learning representations that outside of the ontology. The experimental results show the advantages of these approaches on semantic relatedness tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.