Data augmentation has been widely used to improve generalizability of machine learning models. However, comparatively little work studies data augmentation for graphs. This is largely due to the complex, non-Euclidean structure of graphs, which limits possible manipulation operations. Augmentation operations commonly used in vision and language have no analogs for graphs. Our work studies graph data augmentation for graph neural networks (GNNs) in the context of improving semi-supervised node-classification. We discuss practical and theoretical motivations, considerations and strategies for graph data augmentation. Our work shows that neural edge predictors can effectively encode class-homophilic structure to promote intra-class edges and demote inter-class edges in given graph structure, and our main contribution introduces the GAug graph data augmentation framework, which leverages these insights to improve performance in GNN-based node classification via edge prediction. Extensive experiments on multiple benchmarks show that augmentation via GAug improves performance across GNN architectures and datasets.
While mobile social apps have become increasingly important in people's daily life, we have limited understanding on what motivates users to engage with these apps. In this paper, we answer the question whether users' in-app activity patterns help inform their future app engagement (e.g., active days in a future time window)? Previous studies on predicting user app engagement mainly focus on various macroscopic features (e.g., time-series of activity frequency), while ignoring fine-grained inter-dependencies between different in-app actions at the microscopic level. Here we propose to formalize individual user's in-app action transition patterns as a temporally evolving action graph, and analyze its characteristics in terms of informing future user engagement. Our analysis suggested that action graphs are able to characterize user behavior patterns and inform future engagement. We derive a number of high-order graph features to capture in-app usage patterns and construct interpretable models for predicting trends of engagement changes and active rates. To further enhance predictive power, we design an end-to-end, multi-channel neural model to encode temporal action graphs, activity sequences, and other macroscopic features. Experiments on predicting user engagement for 150k Snapchat new users over a 28-day period demonstrate the effectiveness of the proposed models. The prediction framework is deployed at Snapchat to deliver real world business insights. Our proposed framework is also general and can be applied to other social app platforms 1 .
No abstract
Graph Neural Networks (GNNs) have risen to prominence in learning representations for graph structured data. A single GNN layer typically consists of a feature transformation and a feature aggregation operation. The former normally uses feed-forward networks to transform features, while the latter aggregates the transformed features over the graph. Numerous recent works have proposed GNN models with different designs in the aggregation operation. In this work, we establish mathematically that the aggregation processes in a group of representative GNN models including GCN, GAT, PPNP, and APPNP can be regarded as (approximately) solving a graph denoising problem with a smoothness assumption. Such a unified view across GNNs not only provides a new perspective to understand a variety of aggregation operations but also enables us to develop a unified graph neural network framework UGNN. To demonstrate its promising potential, we instantiate a novel GNN model, ADA-UGNN, derived from UGNN, to handle graphs with adaptive smoothness across nodes. Comprehensive experiments show the effectiveness of ADA-UGNN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.