Soit V une variété complexe et soit I le champ de tenseurs de type (1,1) de V définissant la structure complexe de V. Un champ de vecteurs ξ sur V sera dit conforme si I [ξ, η]= [ξ, Iη] pour tout champ de vecteurs η sur V. On désignera par α l’ensemble de tous les champs de vecteurs comformes sur V. α est une sous-algèbre de Lie de l’algèbre de Lie de tous les champs de vecteurs sur V. Si V est compacte, α est de dimension finie et s’identifie avec l’algèbre de Lie du groupe de Lie A(V) d’homéomorphismes analytiques de V [2] De plus, si ξ, η ∈ α, on a On peut donc définir une structure d’algèbre de Lie complexe de α en posant pour tout ξ ∈ α.
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.. Annals of Mathematics is collaborating with JSTOR to digitize, preserve and extend access to Annals of Mathematics.
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.. The Johns Hopkins University Press is collaborating with JSTOR to digitize, preserve and extend access to American Journal of Mathematics.
This note is a sequel to the previous one [l ], and is devoted to some applications of the results of the latter to adele groups. The results are valid for linear algebraic groups defined over number fields, but this case is easily reduced to that of groups defined over 0 [3, Chapter I], to which we shall limit ourselves for simplicity. The notation of [l] is freely used. For the unexplained notions concerning adeles, see [2; 3].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.