The in vitro and in vivo antifungal activities of T-2307, a novel arylamidine, were evaluated and compared with those of fluconazole, voriconazole, micafungin, and amphotericin B. T-2307 exhibited broad-spectrum activity against clinically significant pathogens, including Candida species (MIC range, 0.00025 to 0.0078 g/ml), Cryptococcus neoformans (MIC range, 0.0039 to 0.0625 g/ml), and Aspergillus species (MIC range, 0.0156 to 4 g/ml). Furthermore, T-2307 exhibited potent activity against fluconazole-resistant and fluconazole-susceptible-dose-dependent Candida albicans strains as well as against azole-susceptible strains. T-2307 exhibited fungicidal activity against some Candida and Aspergillus species and against Cryptococcus neoformans. In mouse models of disseminated candidiasis, cryptococcosis, and aspergillosis, the 50% effective doses of T-2307 were 0.00755, 0.117, and 0.391 mg ⅐ kg ؊1 ⅐ dose ؊1 , respectively. This agent was considerably more active than micafungin and amphotericin B against candidiasis and than amphotericin B against cryptococcosis, and its activity was comparable to the activities of micafungin and amphotericin B against aspergillosis. The results of preclinical in vitro and in vivo evaluations performed thus far indicate that T-2307 could represent a potent injectable agent for the treatment of candidiasis, cryptococcosis, and aspergillosis.
The in vitro and in vivo activities of T-3811ME, a novel des-F(6)-quinolone, were evaluated in comparison with those of some fluoroquinolones, including a newly developed one, trovafloxacin. T-3811, a free base of T-3811ME, showed a wide range of antimicrobial spectra, including activities against Chlamydia trachomatis, Mycoplasma pneumoniae, andMycobacterium tuberculosis. In particular, T-3811 exhibited potent activity against various gram-positive cocci, with MICs at which 90% of the isolates are inhibited (MIC90s) of 0.025 to 6.25 μg/ml. T-3811 was the most active agent against methicillin-resistant Staphylococcus aureus and streptococci, including penicillin-resistant Streptococcus pneumoniae (PRSP). T-3811 also showed potent activity against quinolone-resistant gram-positive cocci with GyrA and ParC (GrlA) mutations. The activity of T-3811 against members of the familyEnterobacteriaceae and nonfermentative gram-negative rods was comparable to that of trovafloxacin. In common with other fluoroquinolones, T-3811 was highly active against Haemophilus influenzae, Moraxella catarrhalis, andLegionella sp., with MIC90s of 0.0125 to 0.1 μg/ml. T-3811 showed a potent activity against anaerobic bacteria, such as Bacteroides fragilis and Clostridium difficile. T-3811 was the most active agent against C. trachomatis (MIC, 0.008 μg/ml) and M. pneumoniae(MIC90, 0.0313 μg/ml). The activity of T-3811 againstM. tuberculosis (MIC90, 0.0625 μg/ml) was potent and superior to that of trovafloxacin. In experimental systemic infection with a GrlA mutant of S. aureus and experimental pneumonia with PRSP in mice, T-3811ME showed excellent therapeutic efficacy in oral and subcutaneous administrations.
T-3761, a new quinolone derivative, showed broad and potent antibacterial activity. Its MICs for 90% of the strains tested were 0.20 to 100 ,Lg/ml against gram-positive bacteria, including members of the genera Staphylococcus, Streptococcus, and Enterococcus; 0.025 to 3.13 ,ug/ml against gram-negative bacteria, including members of the family Enterobacteriaceae and the genus Haemophilus; 0.05 to 50 p,g/ml against glucose nonfermenters, including members of the genera Pseudomonas, Xanthomonas, Acinetobacter, Alcaligenes, and MoraxeUa; 0.025 ,g/ml against Legionella spp.; and 6.25 to 25 ±g/ml against anaerobes, including Bacteroides fragilis, Clostridium difJicile, and Peptostreptococcus spp. The in vitro activity of T-3761 against these clinical isolates was comparable to or 2-to 32-fold greater than those of ofloxacin and norfloxacin and 2-to 16-fold less and 1-to 8-fold greater than those of ciprofloxacin and tosufloxacin, respectively. When administered orally, T-3761 showed good efficacy in mice against systemic, pulmonary, and urinary tract infections with gram-positive and gram-negative bacteria, including quinolone-resistant Serratia marcescens and Pseudomonas aeruginosa. The in vivo activity of T-3761 was comparable to or greater than those of ofloxacin, ciprofloxacin, norfloxacin, and tosufloxacin against most infection models in mice. The activities of T-3761 were lower than those of tosufloxacin against gram-positive bacterial systemic and pulmonary infections in mice but not against infections with methicillin-resistant Staphylococcus aureus. The activities of T-3761 against systemic quinolone-resistant Serratia marcescens and Pseudomonas aeruginosa infections in mice were 2-to 14-fold greater than those of the reference agents.
T-3811, the free base of T-3811ME (BMS-284756), a new des-F(6)-quinolone, showed a potent in vitro activity (MIC at which 90% of the isolates tested are inhibited [MIC 90 ], 0.0313 g/ml) against Mycoplasma pneumoniae. The MIC 90 of T-3811 was 4-fold higher than that of clarithromycin but was 4-to 8-fold lower than those of trovafloxacin, gatifloxacin, gemifloxacin, and moxifloxacin and was 16-to 32-fold lower than those of levofloxacin, ciprofloxacin, and minocycline. In an experimental M. pneumoniae pneumonia model in hamsters, after the administration of T-3811ME (20 mg/kg of body weight as T-3811, once daily, orally) for 5 days, the reduction of viable cells of M. pneumoniae in bronchoalveolar lavage fluid was greater than those of trovafloxacin, levofloxacin, and clarithromycin (20 and 40 mg/kg, orally) (P < 0.05).
Exposure of Staphylococcus aureus to 1 x MIC of the quinolone antibiotic pazufloxacin for 24 h, followed by plating on drug-free media, led to the emergence of small colony variants (SCVs) in addition to large colony variants (LCVs). However, following incubation with 0.25 or 4 x MIC of pazufloxacin, only LCVs were obtained. The SCVs were half as susceptible to pazufloxacin or ciprofloxacin as wild-type S. aureus, while the susceptibilities of LCVs were essentially unchanged. The reduced susceptibilities of SCVs did not result from mutations in the quinolone-resistance-determining regions of DNA gyrase and topoisomerase IV, since the sequences of these genes were identical to those of the wild-type. However, the SCVs accumulated pazufloxacin and ciprofloxacin to a lesser degree than did wild-type. Furthermore, their susceptibility to quinolones was almost unaffected by reserpine or verapamil, suggesting that the reduced uptake resulted from decreased permeability, rather than from an active efflux pump. The ability of various quinolones to induce emergence of SCVs in S. aureus, correlated with the presence of carbon-bonded substituents at the C-7 position of a quinoline or naphthyridine nucleus, or with the presence of a benzoxazine nucleus. In conclusion, pazufloxacin-induced SCVs represent a mutant that one might expect to be rapidly eliminated in vivo and, hence, not to survive as a quinolone-resistant pathogen. This finding suggests a novel approach for development of future quinolones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.