A common strategy to handle simulation-based uncertainty quantification problems is adopting a metamodel to replace time-demanding calculations such as computational fluid dynamics simulation or finite element analysis within Monte Carlo simulation process. However, most of the so far metamodel-assisted uncertainty quantification methods suffer from the ‘curse of dimensionality.’ The required number of evaluations, which determines the computational cost, increases exponentially as the dimensionality of the input uncertainty increases, resulting in unaffordable computational cost for high-dimensional problems. Another challenge emerges when the output uncertainties are a spatially varying field accommodating a huge number of spatial nodes. To solve these issues, here we propose a dimension-reduction metamodeling approach, in which active subspace method is utilized to reduce the input dimensionality and proper orthogonal decomposition method is utilized to reduce the output dimensionality of the spatially varying field. The relationship between the two methods is established by using the support vector regression model. Through uncertainty quantification of seven stochastic analytical functions and one stochastic convection-diffusion equation, the proposed approach was verified to be fairly accurate in propagating high-dimensional input uncertainties to either a scalar value or a spatially varying output. The accuracy and efficiency of the proposed approach in dealing with even more practical simulation-based problems were then validated by uncertainty quantification of a compressor cascade with stochastic protrusions/dents distributed on the blade surface. This work provides an effective and versatile approach for simulation-based high-dimensional uncertainty quantification problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.