Over the last few years, Earth Observation (EO) data has shifted towards increased use to produce official statistics, particularly in the agriculture sector. National statistics offices worldwide, including in Asia and the Pacific, are expanding their use of EO data to produce agricultural statistics such as crop classification, yield estimation, irrigation mapping, and crop loss estimation. The advances in image classification, such as pixel-based and phenology-based classifications, and machine learning create new opportunities for researchers to analyze EO data applied to agriculture statistics. However, it requires the ground truth (GT) data because classification result mainly depends on the quality of GT. Therefore, in this study, we introduced a random sampling approach to design and collect GT data using EO imagery and ancillary data. As a result of data collection, GT data improve the algorithms and validates classification results. Nevertheless, despite the importance of GT data, they are rarely disseminated as a data product in themselves. Thus, this results in an untapped opportunity to share GT data as a global public good, and improved use of survey and census data as a source of GT data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.