Pineapple production around the world creates large amounts of wasted organic residue, mainly in the form of pineapple leaves. Current management practices consist of in situ decomposition or in situ burning, both of which cause the proliferation of flies and air pollution, respectively. The research conducted aims to develop a utilization process for this residue. Considering that pineapple leaves are rich in carbohydrates and other nutrients, a simple biological process involving a two-step procedure for juice production and ethanol fermentation has been developed to convert the leaves into renewable fuel and spent yeasts for animal feed. The liquid fraction extracted from the leaves is used as the nutrients to culture yeast, Kluyveromyces marxianus, for ethanol and yeast protein production. In Costa Rica, one of the major pineapple-producing countries in the world, the studied process can produce 92,708 and 64,859 tons of bioethanol and spent yeast per year, respectively, from its 44,500 hectares of pineapple plantation. This techno-economic analysis indicates that a regional biorefinery with the capacity to produce 50,000 metric tons per year of ethanol could have a short payback period of 4.72 years. The life cycle analysis further demonstrates the advantages of the studied biorefining concept over the current practice of open burning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.