International audienceChallenges for the next generation of Brain Computer Interfaces (BCI) are to mitigate the common sources of variability (electronic, electrical, biological) and to develop online and adaptive systems following the evolution of the subject's brain waves. Studying electroencephalographic (EEG) signals from their associated covariance matrices allows the construction of a representation which is invariant to extrinsic perturbations. As covariance matrices should be estimated, this paper first presents a thorough study of all estimators conducted on real EEG recording. Working in Euclidean space with covariance matrices is known to be error-prone, one might take advantage of algorithmic advances in Riemannian geometry and matrix manifold to implement methods for Symmetric Positive-Definite (SPD) matrices. Nonetheless, existing classification algorithms in Riemannian spaces are designed for offline analysis. We propose a novel algorithm for online and asynchronous processing of brain signals, borrowing principles from semi-unsupervised approaches and following a dynamic stopping scheme to provide a prediction as soon as possible. The assessment is conducted on real EEG recording: this is the first study on Steady-State Visually Evoked Potential (SSVEP) experimentations to exploit online classification based on Rie-mannian geometry. The proposed online algorithm is evaluated and compared with state-of-the-art SSVEP methods, which are based on Canonical Correlation Analysis (CCA). It is shown to improve both the classification accuracy and the information transfer rate in the online and asynchronous setup
International audienceBrain Computer Interfaces (BCI) rely on brain waves signal, such as electro-encephalogram (EEG) recording, to endow a disabled user with non-muscular communication. Given the very low signal-to-noise ratio of EEG, a signal enhancement phase is crucial for ensuring decent performances in BCI systems. Several methods have been proposed for EEG signal enhancement, such as Independent Component Analysis, Common Spatial Pattern, and Principal Component Analysis. We show that Canonical Correlation Analysis (CCA), initially introduced to SSVEP-based BCI as a feature extraction method, is a good candidate for such preprocessing state. Evaluation is performed on a recording from 5 subjects during a BCI task based on Steady-State Visual Evoked Potentials (SSVEP). We demonstrate that CCA significantly improves classification performances in SSVEP-based BCIs
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.