This study focuses on clarifying the strong interaction existing between extended graphitic domains of ordered carbonaceous materials such as multiwalled carbon nanotubes and platinum nanoparticles. This interaction results from the heterogeneous nucleation of platinum nanoparticles onto the carbon support. The metal clusters are chemically synthesized by using the carbonyl route. Two different carbon supports are used namely, homemade multiwalled carbon nanotubes, MWCNT-m, and classical Vulcan XC-72. Physicochemical properties of these materials are described by Raman spectroscopy, Xray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD). The effect of the strong interaction on the electronic properties of platinum nanoparticles is electrochemically probed by means of CO stripping experiments coupled with in situ Fourier transform infrared spectroscopy (FTIR). Density functional theory (DFT) is used to evaluate changes to the electronic structure of a platinum cluster interacting with a graphite substrate and their effects on CO adsorption on the cluster. Results are correlated with structural and electronic properties of platinum nanoparticles. The stability of Pt/carbon catalysts under electrochemical potential cycling is correlated with the properties of carbon substrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.