The limited dispersal ability of earthworms is expected to result in marked genetic isolation by distance and remarkable spatial patterns of genetic variation. To test this hypothesis, we investigated, using microsatellite loci, the spatial genetic structure of two earthworm species, Allolobophora chlorotica and Aporrectodea icterica, in two plots of less than 1 ha where a total of 282 individuals were collected. We used spatial autocorrelation statistics, partial Mantel tests of isolation-by-distance (IBD) and isolation-by-resistance (IBR), and Bayesian test of clustering to explore recent patterns involved in the observed genetic structure. For A. icterica, a low signal of genetic structure was detected, which may be explained by an important dispersal capacity and/or by the low polymorphism of the microsatellite loci. For A. chlorotica, a weak, but significant, pattern of IBD associated with positive autocorrelation was observed in one of the plots. In the other plot, which had been recently ploughed, two genetically differentiated clusters were identified. These results suggest a spatial neighbourhood structure in A. chlorotica, with neighbour individuals that tend to be more genetically similar to one another, and also highlight that habitat perturbation as a result of human activities may deeply alter the genetic structure of earthworm species, even at a very small scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.