A B S T R A C T Elastase is released from human neutrophils during the early events of blood coagulation. Human plasma kallikrein has been shown to stimulate neutrophil chemotaxis, aggregation, and oxygen consumption. Therefore, the ability of kallikrein to release neutrophil elastase was investigated. Neutrophils were isolated by dextran sedimentation, and elastase release was measured by both an enzyme-linked immunosorbent assay, and an enzymatic assay using t-butoxycarbonyl-Ala-Ala-Pro-Val-amino methyl coumarin as the substrate. Kallikrein, 0.1-1.0 U/ml, (0.045-0.45 ,M), was incubated with neutrophils that were preincubated with cytochalasin B (5 Mg/ml). The release of elastase was found to be proportional to the kallikrein concentration. Kallikrein released a maximum of 34% of the total elastase content, as measured by solubilizing the neutrophils in the nonionic detergent Triton X-100. A series of experiments was carried out to determine if kallikrein was a major enzyme involved in neutrophil elastase release during blood coagulation. When 10 million neutrophils were incubated in 1 ml of normal plasma in the presence of 30
In spite of 50 years of extensive use of penicillin, group A streptococci remain exquisitely susceptible to this antibiotic. This observation that continuing susceptibility has occurred despite the development of resistance to other antimicrobial agents prompted a day-long meeting at Rockefeller University (New York) in October 1996. Among the most likely explanations for this remarkable state of continued susceptibility to penicillin are that beta-lactamase may not be expressed or may be toxic to the organism and/or that low-affinity penicillin-binding proteins either are not expressed or render organisms nonviable. Other potential explanations are that circumstances favorable for the development of resistance have not yet occurred and/or that there are inefficient mechanisms for or barriers to genetic transfer. Recommended future actions include (1) additional laboratory investigations of gene transfer, penicillin-binding proteins, virulence factors, and homeologous recombination and mismatch repair; (2) increased surveillance for the development of penicillin resistance; (3) application of bioinformatics to analyze streptococcal genome sequences; and (4) development of vaccines and novel antimicrobial agents. Thus far the susceptibility of group A streptococci to penicillin has not been a major clinical or epidemiological problem. A similar observation, however, could have been made decades ago about Streptococcus pneumoniae. It is therefore vital for the scientific community to closely examine why penicillin has remained uniformly highly active against group A streptococci in order to maintain this desirable state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.