Flavonoids are polyphenolic compounds produced by plants and delivered to the human body through food. Although the epidemiological analyses of large human populations did not reveal a simple correlation between flavonoid consumption and health, laboratory investigations and clinical trials clearly demonstrate the effectiveness of flavonoids in the prevention of cardiovascular, carcinogenic, neurodegenerative and immune diseases, as well as other diseases. At present, the abilities of flavonoids in the regulation of cell metabolism, gene expression, and protection against oxidative stress are well-known, although certain biophysical aspects of their functioning are not yet clear. Most flavonoids are poorly soluble in water and, similar to lipophilic compounds, have a tendency to accumulate in biological membranes, particularly in lipid rafts, where they can interact with different receptors and signal transducers and influence their functioning through modulation of the lipid-phase behavior. In this study, we discuss the enhancement in the lipophilicity and antioxidative activity of flavonoids after their complexation with transient metal cations. We hypothesize that flavonoid-metal complexes are involved in the formation of molecular assemblies due to the facilitation of membrane adhesion and fusion, protein-protein and protein-membrane binding, and other processes responsible for the regulation of cell metabolism and protection against environmental hazards.
Plant flavonoids are not only known as powerful antioxidants, but also as cell metabolism regulators. It has been postulated that they are able to control cell signal pathways by targeting receptors on the cell surface or by intercalating the lipid bilayer of membranes. Some flavonoids can increase lipid viscosity and decrease the cooperativity of hydrocarbon chain melting, while others can considerably decrease the lipid melting temperature, thus providing additional freedom for lipid diffusion. Here we discuss the ability of flavonoids to influence phase transition and lateral segregation of lipids, responsible for the formation of membrane compartments known as lipid rafts. The thermodynamic parameters of the bilayer determined by lipid packing characteristics and by lateral segregation of the bilayer are expected to depend on the location of flavonoid molecules in the bilayer. Flavonoid molecules preferably located in the hydrophobic region of the bilayer can initiate formation of raft-like domains (raft-making effect), while the molecules located in the polar interface region of the bilayer can fluidize membranes (raft-breaking effect), or initiate formation of interdigitated or micellar structures. Accordingly, we expect that in cellular membranes flavonoids can influence the appearance and development of rafts or raft-like membrane domains and thus influence the lateral diffusion of lipid molecules. Because rafts participate in cellular signal transduction, endocytosis and transmembrane translocation of different compounds, flavonoids may control cell metabolism by modulating the bilayer state.
It was found that complexes of the flavonoids quercetin, taxifolin, catechin and morin with divalent iron initiated an increase in light scattering in a suspension of unilamellar 100nm liposomes. The concentration of divalent iron in the suspension was 10μM. Liposomes were prepared from 1-palmitoyl-2-oleoylglycero-3-phoshpatidylcholine. The fluorescent resonance energy transfer (FRET) analysis of liposomes labeled with NBD-PE and lissamine rhodamine B dyes detected a slow lipid exchange in liposomes treated with flavonoid-iron complexes and calcium, while photon correlation spectroscopy and freeze-fracture electron microscopy revealed the aggregation and fusion of liposomes to yield gigantic vesicles. Such processes were not found in liposomes treated with phloretin because this flavonoid is unable to interact with iron. Rutin was also unable to initiate any marked changes because this water-soluble flavonoid cannot interact with the lipid bilayer. The experimental data and computer calculations of lipophilicity (cLogP) as well as the charge distribution on flavonoid-iron complexes indicate that the adhesion of liposomes is provided by an iron link between flavonoid molecules integrated in adjacent bilayers. It is supposed that calcium cations facilitate the aggregation and fusion of liposomes because they interact with the phosphate moieties of lipids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.