In view of the limited ruthenium resource, metal-free organic dyes may play a prominent role in the coming large-scale application of cost-effective dye-sensitized solar cells, if their efficiency and stability can be considerably improved. In this paper we utilized a binary π-conjugated spacer of ethylenedioxythiophene and dithienosilole to construct a high molar absorption coefficient push-pull dye, characteristic of an intramolecular charge-transfer band peaking at 584 nm measured in chloroform. In comparison with the standard ruthenium sensitizer Z907, this metal-free chromophore C219 endowed a nanocrystalline titania film with an evident light-harvesting enhancement, leading to an unprecedented 10.0-10.3% efficiency at the AM1.5G conditions for dyesensitized solar cells with nonruthenium dyestuffs, although a highly volatile electrolyte was used. Transient absorption measurements have revealed that even if the kinetics of back-electron transfer and dye regeneration are considerably different for Z907 and C219, the branching ratios of these two charge-transfer channels are over 35 for both dyes, ensuring a high yield of net charge separation at the titania/dye/electrolyte interface. A solvent-free ionic liquid cell with C219 as the sensitizer exhibited an impressive efficiency of 8.9% under a low light intensity of 14.39 mW cm -2 , making it very favorable for the indoor application of flexible dye-sensitized solar cells.
Registro de acceso restringido Este recurso no está disponible en acceso abierto por política de la editorial. No obstante, se puede acceder al texto completo desde la Universitat Jaume I o si el usuario cuenta con suscripción. Registre d'accés restringit Aquest recurs no està disponible en accés obert per política de l'editorial. No obstant això, es pot accedir al text complet des de la Universitat Jaume I o si l'usuari compta amb subscripció. Restricted access item This item isn't open access because of publisher's policy. The full--text version is only available from Jaume I University or if the user has a running suscription to the publisher's contents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.