Hydrogen energy is critical for achieving carbon neutrality. Heterostructured materials with single metal-atom dispersion are desirable for hydrogen production. However, it remains a great challenge to achieve large-scale fabrication of single atom-anchored heterostructured catalysts with high stability, low cost, and convenience. Here, we report single iron (Fe) atom-dispersed heterostructured Mo-based nanosheets developed from a mineral hydrogel. These rationally designed nanosheets exhibit excellent hydrogen evolution reaction (HER) activity and reliability in alkaline condition, manifesting an overpotential of 38.5 mV at 10 mA cm−2, and superior stability without performance deterioration over 600 h at current density up to 200 mA cm−2, superior to most previously reported non-noble-metal electrocatalysts. The experimental and density functional theory results reveal that the O-coordinated single Fe atom-dispersed heterostructures greatly facilitated H2O adsorption and enabled effective adsorbed hydrogen (H*) adsorption/desorption. The green, scalable production of single-atom-dispersed heterostructured HER electrocatalysts reported here is of great significance in promoting their large-scale implementation.
Full‐color reflective filters for large area applications with potentially unprecedented color saturation and excellent mechanical properties deposited by one‐step magnetron sputtering are proposed. Conventional reflective color filters with multiple layers of dielectric films cannot simultaneously produce a large area and good mechanical properties due to the complex multiple depositions and the difference in the thermal expansion coefficients among the material layers. Herein, full‐spectrum colors are generated by novel Mg‐based reflective color filters in a large area of 2 cm × 2 cm with a high hardness of 9.12 GPa, where the filters include an absorber layer with controllable optical constants and a reflective layer with an amorphous structure. The saturation and hue of the produced colors can be controlled by tuning the optical constants and the thickness of the absorber layer. Additionally, the hardness of the Mg‐based reflective color filters is increased by the reflective metallic glass layers because they are derived from the same material as the absorber layer. This paradigm can pave the way for the efficient fabrication of large area color filtering devices for diverse applications, such as surface decorations, optical components, color display devices, structural color printing, and photovoltaic cells with optimum efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.