SUMMARY Autophagy is an important intracellular catabolic mechanism that mediates the degradation of cytoplasmic proteins and organelles. We report a potent small molecule inhibitor of autophagy named “spautin-1” for specific and potent autophagy inhibitor-1. Spautin-1 promotes the degradation of Vps34 PI3 kinase complexes by inhibiting two ubiquitin-specific peptidases, USP10 and USP13, that target the Beclin1 subunit of Vps34 complexes. Beclin1 is a tumor suppressor and frequently monoallelically lost in human cancers. Interestingly, Beclin1 also controls the protein stabilities of USP10 and USP13 by regulating their deubiquitinating activities. Since USP10 mediates the deubiquitination of p53, regulating deubiquitination activity of USP10 and USP13 by Beclin1 provides a mechanism for Beclin1 to control the levels of p53. Our study provides a molecular mechanism involving protein deubiquitination that connects two important tumor suppressors, p53 and Beclin1, and a potent small molecule inhibitor of autophagy as a possible lead compound for developing anticancer drugs.
The common underlying feature of most neurodegenerative diseases such as Alzheimer disease (AD), prion diseases, Parkinson disease (PD), and amyotrophic lateral sclerosis (ALS) involves accumulation of misfolded proteins leading to initiation of endoplasmic reticulum (ER) stress and stimulation of the unfolded protein response (UPR). Additionally, ER stress more recently has been implicated in the pathogenesis of HIV-associated neurocognitive disorders (HAND). Autophagy plays an essential role in the clearance of aggregated toxic proteins and degradation of the damaged organelles. There is evidence that autophagy ameliorates ER stress by eliminating accumulated misfolded proteins. Both abnormal UPR and impaired autophagy have been implicated as a causative mechanism in the development of various neurodegenerative diseases. This review highlights recent advances in the field on the role of ER stress and autophagy in AD, prion diseases, PD, ALS and HAND with the involvement of key signaling pathways in these processes and implications for future development of therapeutic strategies.
Cocaine abuse leads to neuroinflammation, which, in turn, contributes to the pathogenesis of neurodegeneration associated with advanced HIV-1 infection. Autophagy plays important roles in both innate and adaptive immune responses. However, the possible functional link between cocaine and autophagy has not been explored before. Herein, we demonstrate that cocaine exposure induced autophagy in both BV-2 and primary rat microglial cells as demonstrated by a dose- and time-dependent induction of autophagy-signature proteins such as BECN1/Beclin 1, ATG5, and MAP1LC3B. These findings were validated wherein cocaine treatment of BV-2 cells resulted in increased formation of puncta in cells expressing either endogenous MAP1LC3B or overexpressing GFP-MAP1LC3B. Specificity of cocaine-induced autophagy was confirmed by treating cells with inhibitors of autophagy (3-MA and wortmannin). Intriguingly, cocaine-mediated induction of autophagy involved upstream activation of 2 ER stress pathways (EIF2AK3- and ERN1-dependent), as evidenced by the ability of the ER stress inhibitor salubrinal to ameliorate cocaine-induced autophagy. In vivo validation of these findings demonstrated increased expression of BECN1, ATG5, and MAP1LC3B-II proteins in cocaine-treated mouse brains compared to untreated animals. Increased autophagy contributes to cocaine-mediated activation of microglia since pretreatment of cells with wortmannin resulted in decreased expression and release of inflammatory factors (TNF, IL1B, IL6, and CCL2) in microglial cells. Taken together, our findings suggest that cocaine exposure results in induction of autophagy that is closely linked with neuroinflammation. Targeting autophagic proteins could thus be considered as a therapeutic strategy for the treatment of cocaine-related neuroinflammation diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.