The effects of different local crystalline structures of two-dimensional (2D) MoS2sheets on the performance of organic solar cells (OSCs) are studied, providing new insights towards high-performance devices.
ABC triblock copolymers in which a block with stimulus-dependent solvophilicity resides between solvophilic and solvophobic end blocks can undergo reversible transitions between different thermodynamically stable assemblies in the presence or absence of stimulus. As a new example of such a copolymer system, thermoresponsive poly(ethylene oxide)-b-poly(ethylene oxide-stat-butylene oxide)-b-poly(isoprene) (E-BE-I) triblock copolymers with narrow molecular weight distributions (M(w)/M(n): 1.05-1.18) were prepared by sequential living anionic and nitroxide-mediated radical polymerizations. The specific copolymers examined (9.0 ≤ M(n) ≤ 14.4 kg/mol, 14% ≤ wt % isoprene ≤35%) form near-spherical aggregates with narrow size distributions at 25 °C. The thermoresponsive behavior of these polymers was studied by applying cloud point, DLS, and TEM measurements to a representative polymer, E(2.3)BE(5.3)I(2.3). The transformation of polymer aggregates from spherical micelles to vesicles (polymersomes) at elevated temperatures was detected by DLS and TEM studies, both with and without cross-linking of polymer assemblies. The rate of transformation with E-BE-I systems is more rapid than that observed for poly(ethylene oxide)-b-poly(N-isopropylacrylamide)-b-poly(isoprene) assemblies, suggesting that interchain hydrogen bonding of responsive blocks after dehydration plays an important role in the kinetics of aggregate rearrangement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.