It is crucial that magnetic memory devices formed from magnetic heterostructures possess sizable spin-orbit torque (SOT) efficiency and high thermal stability to realize both efficient SOT control and robust storage of such memory devices. However, most previous studies on various types of magnetic heterostructures have focused on only their SOT efficiencies, whereas the thermal stabilities therein have been largely ignored. In this work, we study the temperature-dependent SOT and stability properties of two types of W-based heterostructures, namely W/CoFeB/MgO (standard) and CoFeB/W/CoFeB/MgO (field-free), from 25 ℃ (298 K) to 80 ℃ (353 K). Via temperature-dependent SOT characterization, the SOT efficacies for both systems are found to be invariant within the range of studied temperatures. Temperature-dependent current-induced SOT switching measurements further show that the critical switching current densities decrease with respect to the ambient temperature; thermal stability factors ( ∆ ) are also found to degrade as temperature increases for both standard and field-free systems. The memristive SOT switching behaviors in both systems with various pulse-widths and temperatures are also examined. Our results suggest that although the SOT efficacy is robust against thermal effects, the reduction of ∆ at elevated temperatures could be detrimental to standard memory as well as neuromorphic (memristive) device applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.