Pressure retarded osmosis has the potential to produce renewable energy from natural salinity gradients. This work presents the fabrication of thin-film composite membranes customized for high performance in pressure retarded osmosis. We also present the development of a theoretical model to predict the water flux in pressure retarded osmosis, from which we can predict the power density that can be achieved by a membrane. The model is the first to incorporate external concentration polarization, a performance limiting phenomenon that becomes significant for high-performance membranes. The fabricated membranes consist of a selective polyamide layer formed by interfacial polymerization on top of a polysulfone support layer made by phase separation. The highly porous support layer (structural parameter S = 349 μm), which minimizes internal concentration polarization, allows the transport properties of the active layer to be customized to enhance PRO performance. It is shown that a hand-cast membrane that balances permeability and selectivity (A = 5.81 L m(-2) h(-1) bar(-1), B = 0.88 L m(-2) h(-1)) is projected to achieve the highest potential peak power density of 10.0 W/m(2) for a river water feed solution and seawater draw solution. The outstanding performance of this membrane is attributed to the high water permeability of the active layer, coupled with a moderate salt permeability and the ability of the support layer to suppress the undesirable accumulation of leaked salt in the porous support. Membranes with greater selectivity (i.e., lower salt permeability, B = 0.16 L m(-2) h(-1)) suffered from a lower water permeability (A = 1.74 L m(-2) h(-1) bar(-1)) and would yield a lower peak power density of 6.1 W/m(2), while membranes with a higher permeability and lower selectivity (A = 7.55 L m(-2) h(-1) bar(-1), B = 5.45 L m(-2) h(-1)) performed poorly due to severe reverse salt permeation, resulting in a similar projected peak power density of 6.1 W/m(2).
This article analyzes the influence of feed channel spacers on the performance of pressure retarded osmosis (PRO). Unlike forward osmosis (FO), an important feature of PRO is the application of hydraulic pressure on the high salinity (draw solution) side to retard the permeating flow for energy conversion. We report the first observation of membrane deformation under the action of the high hydraulic pressure on the feed channel spacer and the resulting impact on membrane performance. Because of this observation, reverse osmosis and FO tests that are commonly used for measuring membrane transport properties (water and salt permeability coefficients, A and B, respectively) and the structural parameter (S) can no longer be considered appropriate for use in PRO analysis. To accurately predict the water flux as a function of applied hydraulic pressure difference and the resulting power density in PRO, we introduced a new experimental protocol that accounts for membrane deformation in a spacer-filled channel to determine the membrane properties (A, B, and S). PRO performance model predictions based on these determined A, B, and S values closely matched experimental data over a range of draw solution concentrations (0.5 to 2 M NaCl). We also showed that at high pressures feed spacers block the permeation of water through the membrane area in contact with the spacer, a phenomenon that we term the shadow effect, thereby reducing overall water flux. The implications of the results for power generation by PRO are evaluated and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.