BackgroundAtrial fibrillation is associated with higher mortality. Identification of causes of death and contemporary risk factors for all‐cause mortality may guide interventions.Methods and ResultsIn the Rivaroxaban Once Daily Oral Direct Factor Xa Inhibition Compared with Vitamin K Antagonism for Prevention of Stroke and Embolism Trial in Atrial Fibrillation (ROCKET AF) study, patients with nonvalvular atrial fibrillation were randomized to rivaroxaban or dose‐adjusted warfarin. Cox proportional hazards regression with backward elimination identified factors at randomization that were independently associated with all‐cause mortality in the 14 171 participants in the intention‐to‐treat population. The median age was 73 years, and the mean CHADS 2 score was 3.5. Over 1.9 years of median follow‐up, 1214 (8.6%) patients died. Kaplan–Meier mortality rates were 4.2% at 1 year and 8.9% at 2 years. The majority of classified deaths (1081) were cardiovascular (72%), whereas only 6% were nonhemorrhagic stroke or systemic embolism. No significant difference in all‐cause mortality was observed between the rivaroxaban and warfarin arms (P=0.15). Heart failure (hazard ratio 1.51, 95% CI 1.33–1.70, P<0.0001) and age ≥75 years (hazard ratio 1.69, 95% CI 1.51–1.90, P<0.0001) were associated with higher all‐cause mortality. Multiple additional characteristics were independently associated with higher mortality, with decreasing creatinine clearance, chronic obstructive pulmonary disease, male sex, peripheral vascular disease, and diabetes being among the most strongly associated (model C‐index 0.677).ConclusionsIn a large population of patients anticoagulated for nonvalvular atrial fibrillation, ≈7 in 10 deaths were cardiovascular, whereas <1 in 10 deaths were caused by nonhemorrhagic stroke or systemic embolism. Optimal prevention and treatment of heart failure, renal impairment, chronic obstructive pulmonary disease, and diabetes may improve survival.Clinical Trial Registration URL: https://www.clinicaltrials.gov/. Unique identifier: NCT00403767.
Background A secondary rise of intracellular Ca2+ (Cai) and an upregulation of IKAS are characteristic findings of failing ventricular myocytes. We hypothesize that apamin, a specific IKAS blocker, may induce torsades de pointes (TdP) ventricular arrhythmia from failing ventricles exhibiting secondary rises of Cai. Objectives To test the hypothesis that small conductance Ca2+ activated apamin sensitive K+ current (IKAS) maintains repolarization reserve and prevents ventricular arrhythmia in a rabbit model of heart failure (HF). Methods We performed Langendorff perfusion and optical mapping studies in 7 hearts with pacing-induced HF and in 5 normal control rabbit hearts. Atrioventricular (AV) block was created by cryoablation to allow pacing at slow rates. Results The left ventricular ejection fraction reduced from 69.1 [95% confidence interval 62.3–76.0]% pre-pacing to 30.4 [26.8–34.0]% (N=7, p<0.001) post-pacing. The QTc in failing ventricles was 337 [313–360] ms at baseline and 410 [381–439] ms after applying 100 nmol/L of apamin (p=0.01). Apamin induced early afterdepolarizations (EADs) in 6 ventricles, premature ventricular beats (PVBs) in 7 ventricles and polymorphic ventricular tachycardia consistent with TdP in 4 ventricles. The earliest activation site of the EADs and PVBs always occurred at the site with long APD and large amplitude of the secondary rises of Cai. Apamin induced secondary rises of Cai in 1 non-failing ventricles, but no EAD or TdP were observed. Conclusion In HF ventricles, apamin induces EADs, PVBs and TdP from areas with secondary rises of Cai. IKAS is important in maintaining repolarization reserve and preventing TdP in HF ventricles.
Background Small conductance calcium activated potassium channels (SKCa) are voltage insensitive and are activated by intracellular calcium. Genome wide association studies revealed that a variant of SKca is associated with lone atrial fibrillation (AF) in humans. Roles of SKca in atrial arrhythmias remain unclear. Objective The purpose of this study was to determine roles of SKCa in atrial arrhythmias. Methods Optical mapping using isolated canine left atrium was performed. The optical action potential duration (APD) and induction of arrhythmia were evaluated before and after the addition of specific SKCa blockers, Apamin or UCL-1684. Results SKCa blockade significantly increased APD80 (188±19 ms vs 147±11ms, p< 0.001). The pacing cycle length (PCL) thresholds to induce 2:2 alternans and wave breaks were prolonged by SKCa blockade. Increased APD heterogeneity was observed following SKCa blockade, as measured by the difference between maximum and minimum APD (39±4ms vs 26±5ms, p<0.05), by standard deviation (12.43±2.36ms vs 7.49±1.47ms, p<0.001), or by coefficient of variation (6.68±0.97% vs 4.90±0.84%, p<0.05). No arrhythmia was induced at baseline by S1–S2 protocol. After SKCa blockade, 4 out of 6 atria developed arrhythmia. Conclusion Blockade of SKCa promotes arrhythmia and prolongs the PCL threshold of 2:2 alternans and wave breaks in the canine left atrium. The proarrhythmic effect could be attributed to the increased APD heterogeneity in the canine left atrium. This study provides supportive evidence of GWAS studies showing association of KCNN3 and lone AF
Background Apamin-sensitive K currents (IKAS) are upregulated in heart failure (HF). We hypothesize that apamin can flatten action potential duration restitution (APDR) curve and reduce ventricular fibrillation (VF) duration in failing ventricles. Methods and Results We simultaneously mapped membrane potential and intracellular Ca (Cai) in 7 rabbits hearts with pacing-induced HF and in 7 normal hearts. A dynamic pacing protocol was used to determine APDR at baseline and after apamin (100 nM) infusion. Apamin did not change APD80 in normal ventricles, but prolonged APD80 in failing ventricles at either long (≥300 ms) or short (≤170 ms) pacing cycle length (PCL), but not at intermediate PCL. The maximal slope of APDR curve was 2.03 [95% CI, 1.73 to 2.32] in failing ventricles and 1.26 [95% CI, 1.13 to 1.40] in normal ventricles at baseline (p=0.002). After apamin administration, the maximal slope of APDR in failing ventricles decreased to 1.43 [95% CI, 1.01 to 1.84] (p=0.018) whereas no significant changes were observed in normal ventricles. During VF in failing ventricles, the number of phase singularities (baseline vs apamin, 4.0 vs 2.5), dominant frequency (13.0 Hz vs 10.0 Hz), and VF duration (160 s vs 80 s) were all significantly (p<0.05) decreased by apamin. Conclusions Apamin prolongs APD at long and short, but not at intermediate PCL in failing ventricles. IKAS upregulation may be antiarrhythmic by preserving the repolarization reserve at slow heart rate, but is proarrhythmic by steepening the slope of APDR curve which promotes the generation and maintenance of VF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.