Experimental measurements to analyze the pressure fluctuation performance of a centrifugal pump with a vaned-diffuser, which its specific speed is 190. Results indicate that the main cause of pressure fluctuation is the rotor-stator interference at the impeller outlet. The head of the pump with vaned-diffuser at the design flow rate is 15.03 m, and the efficiency of the pump with a vaned-diffuser at the design flow rate reaches 71.47%. Pressure fluctuation decreases gradually with increasing distance from the impeller outlet. Along with the increase of the flow rate, amplitude of pressure fluctuation decreases. The amplitude of pressure fluctuation at the measuring points near the diffusion section of the pump body is larger than other measuring points. The variation tendency of pressure fluctuation at P1–P10 is the same, while there are wide frequency bands with different frequencies. The dominant frequency of pressure fluctuation is the blade passing frequency. The rotor-stator interference between the impeller and the vaned-diffuser gives rise to the main signal source of pressure fluctuation.
In order to enhance the efficiency of centrifugal pump, the structure of a centrifugal pump with vaned diffuser, whose specific speed is 190, was numerically improved by trimming back-blades of impeller and smoothing sharp corner in annular chamber. The energy performance, the internal flow field, the axial force, the radial force, and the pressure pulsation of the pump were analyzed. Results show that efficiency of the improving scheme 1 under the design flow rate is 77.47%, which can balance 69.82% of the axial force, while efficiency of the improving scheme 2 under the design flow rate is the maximum, which could still balance 62.74% of the axial force. The pressure pulsations of the improving scheme 2 at the typical monitoring points are less than that of the improving scheme 1 and the original scheme. The difference of the radial force peak between the improving scheme 1 and the improving scheme 2 is very small. The vector distributions of the radial force of the improving scheme 1 and the improving scheme 2 are more uniform than that of the original scheme. Considering the efficiency, pressure pulsation, and axial force, experiment measurements on the improving scheme 2 were carried out to verify the effectiveness of the improvement result. Results of energy performance experiment show that efficiency of the improving scheme 2 under the design flow rate is 76.48%, which is 5.26 percentage points higher than that of the original scheme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.