The aim of the present study was to investigate the antitumor effect and mechanism of action of hyperforin in hepatocellular carcinoma (HCC) SK-Hep1 cells in vitro. Cells were treated with different concentrations of hyperforin for different periods of time. Effects of hyperforin on cell viability, apoptosis signaling, and expression of anti-apoptotic and proliferative proteins [cellular FLICE-like inhibitory protein (c-FLIP), X-linked inhibitor of apoptosis protein (XIAP), myeloid cell leukemia 1(MCL1), and cyclin-D1] were investigated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, flow cytometry, and western blotting. Hyperforin significantly inhibited cell viability and expression of anti-apoptotic and proliferative proteins. We also found that hyperforin significantly induced accumulation of cells in sub-G phase, loss of mitochondrial membrane potential, and increased levels of active caspase-3, and caspase-8. Taken together, our findings indicate that hyperforin triggers inhibition of tumor cell growth by inducing intrinsic and extrinsic apoptotic pathways in HCC SK-Hep1 cells.
The self-synthesis of tungsten oxide (W18O49) nanowires on sputter-deposited W films prepared under different O2/Ar flow rate ratios (OAFRRs) in the sputtering gas is reported. After thermally annealing at 700–850 °C in N2 ambient for 15 min, dense and well crystalline W18O49 (010) nanowires or nanobelts were obtained depending on the oxygen content in the sputtering gas. Experimental results show that the annealing temperature required for the full growth of W18O49 nanowires reduced when the OAFRR in the sputtering gas was increased. It is found that the oxygen absorbed in the surface region is responsible for the growth of nanowires. As the OAFRR was increased to (8 sccm)/(24 sccm), which resulted in a saturated oxygen content of about 55 at.% inside the W film, large-scale nanobelts or nanosheets of W18O49 were grown. The possible growth mechanism which governs the evolution from nanowires to nanobelts as the OAFRR was changed is also discussed.
Glioblastoma is the most common primary malignant tumor of the central nervous system, with an annual incidence of 5.26 per 100000 people. The clinical outcome of standard therapy and the survival rate remain poor; therefore, there is an unmet need for a new strategy to treat this lethal disease. Although amentoflavone was known to have anticancer potential in various types of cancers, its antiglioblastoma ability and mechanism remain unrecognized. We demonstrated that amentoflavone may suppress glioblastoma invasion and migration by transwell assay. Moreover, we established NF-[Formula: see text]B reporter gene system and used that for verifying NF-[Formula: see text]B inhibition efficacy of amentoflavone on in vitro and in vivo studies. Here, we indicated that amentoflavone not only diminished NF-[Formula: see text]B activation, but also reduced NF-[Formula: see text]B-mediated downstream oncogenes expression, such as MMP-2, MMP-9, XIAP, cyclinD1 and VEGF, which was elucidated by Western blot and immunohistochemistry (IHC). Tumor growth inhibition and NF-[Formula: see text]B reduction was found in the amentoflavone treatment group, which was revealed by the glioblastoma-bearing animal model. In this study, we also used ERK inhibitor and NF-[Formula: see text]B inhibitor (QNZ) to confirm whether the beneficial result of amentoflavone on glioblastoma was mainly regulated by blockage of ERK/NF-[Formula: see text]B signaling. In summary, ERK/NF-[Formula: see text]B signaling pathway has a role in the inhibition of tumor growth by amentoflavone in glioblastoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.