BackgroundType I insulin-like growth factor receptor (IGF-1R) and insulin receptor (INSR) are highly homologous molecules, which can heterodimerize to form an IGF-1R/INSR hybrid (Hybrid-R). The presence and biological significance of the Hybrid-R in human corneal epithelium has not yet been established. In addition, while nuclear localization of IGF-1R was recently reported in cancer cells and human corneal epithelial cells, the function and profile of nuclear IGF-1R is unknown. In this study, we characterized the nuclear localization and function of the Hybrid-R and the role of IGF-1/IGF-1R and Hybrid-R signaling in the human corneal epithelium.Methodology/Principle FindingsIGF-1-mediated signaling and cell growth were examined in a human telomerized corneal epithelial (hTCEpi) cell line using co-immunoprecipitation, immunoblotting and cell proliferation assays. The presence of Hybrid-R in hTCEpi and primary cultured human corneal epithelial cells was confirmed by immunofluorescence and reciprocal immunoprecipitation of whole cell lysates. We found that IGF-1 stimulated Akt and promoted cell growth through IGF-1R activation, which was independent of the Hybrid-R. The presence of Hybrid-R, but not IGF-1R/IGF-1R, was detected in nuclear extracts. Knockdown of INSR by small interfering RNA resulted in depletion of the INSR/INSR and preferential formation of Hybrid-R. Chromatin-immunoprecipitation sequencing assay with anti-IGF-1R or anti-INSR was subsequently performed to identify potential genomic targets responsible for critical homeostatic regulatory pathways.Conclusion/SignificanceIn contrast to previous reports on nuclear localized IGF-1R, this is the first report identifying the nuclear localization of Hybrid-R in an epithelial cell line. The identification of a nuclear Hybrid-R and novel genomic targets suggests that IGF-1R traffics to the nucleus as an IGF-1R/INSR heterotetrameric complex to regulate corneal epithelial homeostatic pathways. The development of novel therapeutic strategies designed to target the IGF-1/IGF-1R pathway must take into account the modulatory roles IGF-1R/INSR play in the epithelial cell nucleus.
This study characterized the expression and subcellular localization of the IGF-1R in human corneal epithelial cells. Using a human telomerase-immortalized corneal epithelial cell line, IGF-1R expression and localization was assayed by immunofluorescence and subcellular fractionation followed by western blot. IGF-1R expression was confirmed in primary cultured human corneal epithelial cells. Nuclear localization was assessed under basal and IGF-1 stimulated culture conditions; phosphorylation status of the receptor in response to IGF-1 was demonstrated by western blot. IGF-1R:E-cadherin interactions were detected by immunofluorescence and co-immunoprecipitation of whole cell lysates. The results of this study demonstrated that IGF-1R localized predominantly to the nucleus and in a perinuclear cap pattern which co-localized with the Golgi complex in proliferating corneal epithelial cells. There was no difference in nuclear localization between primary or telomerized cell lines. Subcellular fractionation confirmed IGF-1Rα- and β-subunit localization in soluble and chromatin-bound nuclear fractions. Neither growth factor withdrawal nor IGF-1 stimulation altered nuclear IGF-1R. At points of cell-cell contact, IGF-1R co-localized with E-cadherin; co-immunoprecipitation assays confirmed the presence of an IGF-1R:E-cadherin complex. Importantly, this is the first report to identify IGF-1R in the nucleus and complexed with E-cadherin at points of cell-cell contact in corneal epithelial cells. Nuclear trafficking appeared to be independent of ligand-mediated events at the plasma membrane. The identification of IGF-1R in the nucleus and complexed with E-cadherin suggests novel regulatory functions outside the canonical ligand-induced endocytosis signaling pathway.
Papillomavirus DNA replication occurs in the nucleus of infected cells and requires the viral E1 protein, which enters the nuclei of host epithelial cells and carries out enzymatic functions required for the initiation of viral DNA replication. In this study, we investigated the pathway and regulation of the nuclear import of the E1 protein from bovine papillomavirus type 1 (BPV1). Using an in vitro binding assay, we determined that the E1 protein interacted with importins ␣3, ␣4, and ␣5 via its nuclear localization signal (NLS) sequence. In agreement with this result, purified E1 protein was effectively imported into the nucleus of digitonin-permeabilized HeLa cells after incubation with importin ␣3, ␣4, or ␣5 and other necessary import factors. We also observed that in vitro binding of E1 protein to all three ␣ importins was significantly decreased by the introduction of pseudophosphorylation mutations in the NLS region. Consistent with the binding defect, pseudophosphorylated E1 protein failed to enter the nucleus of digitonin-permeabilized HeLa cells in vitro. Likewise, the pseudophosphorylation mutant showed aberrant intracellular localization in vivo and accumulated primarily on the nuclear envelope in transfected HeLa cells, while the corresponding alanine replacement mutant displayed the same cellular location pattern as wild-type E1 protein. Collectively, our data demonstrate that BPV1 E1 protein can be transported into the nucleus by more than one importin ␣ and suggest that E1 phosphorylation by host cell kinases plays a regulatory role in modulating E1 nucleocytoplasmic localization. This phosphoregulation of nuclear E1 protein uptake may contribute to the coordination of viral replication with keratinocyte proliferation and differentiation.Papillomaviruses are the etiological agents involved in several human cancers such as cervical cancer, anogenital cancer, skin cancer, and cancers of the oral cavity, the larynx, and the esophagus (68). In addition to their importance in clinical disease, papillomaviruses have provided a valuable model system for analyzing the mechanisms regulating eukaryotic DNA replication. The viral E1 protein is the largest open reading frame and is highly conserved among all papillomaviruses, maintaining its size, amino acid composition, and location in the viral genome with respect to other early genes. The E1 protein is expressed during the early stage of virus infection in order to maintain the viral DNA as an episome. The multifunctional E1 protein recognizes and binds to the viral origin of replication in combination with the viral protein E2, recruits host cell replication proteins to the origin, and initiates DNA replication via its ATP-dependent helicase activity (60, 61).Papillomavirus infection is established in the basal layer of the epithelium, and the complex viral life cycle is coordinated with the differentiation state of the epithelium (13, 14). There are three distinct modes of viral DNA replication: (i) transient amplification, which occurs immediately upon ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.