Many gram-negative bacteria regulate expression of specialized gene sets in response to population density. This regulatory mechanism, called autoinduction or quorum-sensing, is based on the production by the bacteria of a small, diffusible signal molecule called the autoinducer. In the most well-studied systems the autoinducers are N-acylated derivatives of L-homoserine lactone (acyl-HSL). Signal specificity is conferred by the length, and the nature of the substitution at C-3, of the acyl side-chain. We evaluated four acyl-HSL bioreporters, based on tra of Agrobacterium tumefaciens, lux of Vibrio fischeri, las of Pseudomonas aeruginosa, and pigment production by Chromobacterium violaceum, for their ability to detect sets of 3-oxo acyl-HSLs, 3-hydroxy acyl-HSLs, and alkanoyl-HSLs with chain lengths ranging from C4 to C12. The traG::lacZ fusion reporter from the A. tumefaciens Ti plasmid was the single most sensitive and versatile detector of the four. Using this reporter, we screened 106 isolates representing seven genera of bacteria that associate with plants. Most of the Agrobacterium, Rhizobium, and Pantoea isolates and about half of the Erwinia and Pseudomonas isolates gave positive reactions. Only a few isolates of Xanthomonas produced a detectable signal. We characterized the acyl-HSLs produced by a subset of the isolates by thin-layer chromatography. Among the pseudomonads and erwinias, most produced a single dominant activity chromatographing with the properties of N-(3-oxo-hexanoyl)-L-HSL. However, a few of the erwinias, and the P. fluorescens and Ralstonia solanacearum isolates, produced quite different signals, including 3-hydroxy forms, as well as active compounds that chromatographed with properties unlike any of our standards. The few positive xanthomonas, and almost all of the agrobacteria, produced small amounts of a compound with the chromatographic properties of N-(3-oxo-octanoyl)-L-HSL. Members of the genus Rhizobium showed the greatest diversity, with some producing as few as one and others producing as many as seven detectable signals. Several isolates produced extremely nonpolar compounds indicative of very long acyl side-chains. Production of these compounds suggests that quorum-sensing is common as a gene regulatory mechanism among gram-negative plant-associated bacteria.
Background It is of paramount importance to evaluate the impact of participation in organized mammography service screening independently from changes in breast cancer treatment. This can be done by measuring the incidence of fatal breast cancer, which is based on the date of diagnosis and not on the date of death. Methods Among 549,091 women, covering approximately 30% of the Swedish screening‐eligible population, the authors calculated the incidence rates of 2473 breast cancers that were fatal within 10 years after diagnosis and the incidence rates of 9737 advanced breast cancers. Data regarding each breast cancer diagnosis and the cause and date of death of each breast cancer case were gathered from national Swedish registries. Tumor characteristics were collected from regional cancer centers. Aggregated data concerning invitation and participation were provided by Sectra Medical Systems AB. Incidence rates were analyzed using Poisson regression. Results Women who participated in mammography screening had a statistically significant 41% reduction in their risk of dying of breast cancer within 10 years (relative risk, 0.59; 95% CI, 0.51‐0.68 [P < .001]) and a 25% reduction in the rate of advanced breast cancers (relative risk, 0.75; 95% CI, 0.66‐0.84 [P < .001]). Conclusions Substantial reductions in the incidence rate of breast cancers that were fatal within 10 years after diagnosis and in the advanced breast cancer rate were found in this contemporaneous comparison of women participating versus those not participating in screening. These benefits appeared to be independent of recent changes in treatment regimens.
Background Women and their health care providers need a reliable answer to this important question: If a woman chooses to participate in regular mammography screening, then how much will this choice improve her chances of avoiding a death from breast cancer compared with women who choose not to participate? Methods To answer this question, we used comprehensive registries for population, screening history, breast cancer incidence, and disease‐specific death data in a defined population in Dalarna County, Sweden. The annual incidence of breast cancer was calculated along with the annual incidence of breast cancers that were fatal within 10 and within 11 to 20 years of diagnosis among women aged 40 to 69 years who either did or did not participate in mammography screening during a 39‐year period (1977‐2015). For an additional comparison, corresponding data are presented from 19 years of the prescreening period (1958‐1976). All patients received stage‐specific therapy according to the latest national guidelines, irrespective of the mode of detection. Results The benefit for women who chose to participate in an organized breast cancer screening program was a 60% lower risk of dying from breast cancer within 10 years after diagnosis (relative risk, 0.40; 95% confidence interval, 0.34‐0.48) and a 47% lower risk of dying from breast cancer within 20 years after diagnosis (relative risk, 0.53; 95% confidence interval, 0.44‐0.63) compared with the corresponding risks for nonparticipants. Conclusions Although all patients with breast cancer stand to benefit from advances in breast cancer therapy, the current results demonstrate that women who have participated in mammography screening obtain a significantly greater benefit from the therapy available at the time of diagnosis than do those who have not participated.
Quantum dots (QDs) are one of most utilized nanomaterials in nanocrystalline semiconductors. QDs emit near-infrared fluorescence and can be applied as probes for detecting vasculature and imaging in biological systems. Since QDs have potential in clinical application, the toxicity of QDs needs to be carefully evaluated. In our present study, we elucidate the cytotoxic mechanisms of QDs using a mouse renal adenocarcinoma (RAG) cell line. QDs in RAG cells increased intracellular reactive oxygen species (ROS) levels and induced autophagy at 6 h, leading to subsequent apoptosis at 24 h. QDs entered the cells and were located within the endoplasmic reticulum (ER), endosome, and lysosome at 6 h and endosome, lysosome, and mitochondria at 24 h. However, QDs only affected mitochondrial function and did not induce ER stress. N-Acetylcysteine, an antioxidant agent, reduced intracellular ROS levels and decreased QD-induced autophagy but enhanced QD-induced cell death. Moreover, 3-methylamphetamine (an autophagy inhibitor) also reduced the cell viability in QD-treated cells. These findings suggest that ROS plays an essential role in the regulation of QD-induced autophagy, which subsequently enhances cell survival. Taken together, these results suggest that oxidative stress-induced autophagy is a defense/survival mechanism against the cytotoxicity of QD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.