Tumor suppressor gene silencing through cytosine methylation contributes to cancer formation. Whether DNA demethylation enzymes counteract this oncogenic effect is unknown. Here, we show that TET1, a dioxygenase involved in cytosine demethylation, is downregulated in prostate and breast cancer tissues. TET1 depletion facilitates cell invasion, tumor growth, and cancer metastasis in prostate xenograft models and correlates with poor survival rates in breast cancer patients. Consistently, enforced expression of TET1 reduces cell invasion and breast xenograft tumor formation. Mechanistically, TET1 suppresses cell invasion through its dioxygenase and DNA binding activities. Furthermore, TET1 maintains the expression of tissue inhibitors of metalloproteinase (TIMP) family proteins 2 and 3 by inhibiting their DNA methylation. Concurrent low expression of TET1 and TIMP2 or TIMP3 correlates with advanced node status in clinical samples. Together, these results illustrate a mechanism by which TET1 suppresses tumor development and invasion partly through downregulation of critical gene methylation.
O-linked N-acetylglucosamine (GlcNAc) transferase (OGT) is the only known enzyme that catalyzes the O-GlcNAcylation of proteins at the Ser or Thr side chain hydroxyl group. OGT participates in transcriptional and epigenetic regulation, and dysregulation of OGT has been implicated in diseases such as cancer. However, the underlying mechanism is largely unknown. Here we show that OGT is required for the trimethylation of histone 3 at K27 to form the product H3K27me3, a process catalyzed by the histone methyltransferase enhancer of zeste homolog 2 (EZH2) in the polycomb repressive complex 2 (PRC2). H3K27me3 is one of the most important histone modifications to mark the transcriptionally silenced chromatin. We found that the level of H3K27me3, but not other H3 methylation products, was greatly reduced upon OGT depletion. OGT knockdown specifically down-regulated the protein stability of EZH2, without altering the levels of H3K27 demethylases UTX and JMJD3, and disrupted the integrity of the PRC2 complex. Furthermore, the interaction of OGT and EZH2/PRC2 was detected by coimmunoprecipitation and cosedimentation experiments. Importantly, we identified that serine 75 is the site for EZH2 OGlcNAcylation, and the EZH2 mutant S75A exhibited reduction in stability. Finally, microarray and ChIP analysis have characterized a specific subset of potential tumor suppressor genes subject to repression via the OGT-EZH2 axis. Together these results indicate that OGT-mediated O-GlcNAcylation at S75 stabilizes EZH2 and hence facilitates the formation of H3K27me3. The study not only uncovers a functional posttranslational modification of EZH2 but also reveals a unique epigenetic role of OGT in regulating histone methylation.
The histone variant H3.3 is enriched at enhancers and active genes, as well as repeat regions such as telomeres and retroelements, in mouse embryonic stem cells (mESCs) 1 – 3 . While recent studies demonstrate a role for H3.3 and its chaperones in establishing heterochromatin at repeat regions 4 – 8 , the function of H3.3 in transcription regulation has been less clear 9 – 16 . Here, we find that H3.3-specific phosphorylation 17 – 19 stimulates activity of the acetyltransferase p300 in trans , suggesting that H3.3 acts as a nucleosomal cofactor for p300. Depletion of H3.3 from mESCs reduces acetylation on histone H3 at lysine 27 (H3K27ac) at enhancers. Cells lacking H3.3 demonstrate reduced capacity to acetylate enhancers that are activated upon differentiation, along with reduced ability to reprogram cell fate. Our study demonstrates that a single amino acid in a histone variant can integrate signaling information and globally impact genome regulation, which may help better understand how mutations in these proteins contribute to human cancers 20 , 21 .
The retinoblastoma binding protein RBP2 (KDM5A) is a histone demethylase that promotes gastric cancer cell growth and is enriched in drug-resistant lung cancer cells. In tumor-prone mice lacking the tumor suppressor gene RB or MEN1, genetic ablation of RBP2 can suppress tumor initiation, but the pathogenic breadth and mechanistic aspects of this effect relative to human tumors have not been defined. Here, we approached this question in the context of lung cancer. RBP2 was overexpressed in human lung cancer tissues where its depletion impaired cell proliferation, motility, migration, invasion, and metastasis. RBP2 oncogenicity relied on its demethylase and DNA-binding activities. RBP2 upregulated expression of cyclins D1 and E1 while suppressing the expression of cyclin-dependent kinase inhibitor p27 (CDKN1B), each contributing to RBP2-mediated cell proliferation. Expression microarray analyses revealed that RBP2 promoted expression of integrin-b1 (ITGB1), which is implicated in lung cancer metastasis. Mechanistic investigations established that RBP2 bound directly to the p27, cyclin D1, and ITGB1 promoters and that exogenous expression of cyclin D1, cyclin E1, or ITGB1 was sufficient to rescue proliferation or migration/invasion, respectively. Taken together, our results establish an oncogenic role for RBP2 in lung tumorigenesis and progression and uncover novel RBP2 targets mediating this role. Cancer Res; 73(15); 4711-21. Ó2013 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.