Semi-Supervised Domain Adaptation (SSDA) involves learning to classify unseen target data with a few labeled and lots of unlabeled target data, along with many labeled source data from a related domain. Current SSDA approaches usually aim at aligning the target data to the labeled source data with feature space mapping and pseudolabel assignments. Nevertheless, such a source-oriented model can sometimes align the target data to source data of the wrong classes, degrading the classification performance. This paper presents a novel source-adaptive paradigm that adapts the source data to match the target data. Our key idea is to view the source data as a noisilylabeled version of the ideal target data. Then, we propose an SSDA model that cleans up the label noise dynamically with the help of a robust cleaner component designed from the target perspective. Since the paradigm is very different from the core ideas behind existing SSDA approaches, our proposed model can be easily coupled with them to improve their performance. Empirical results on two state-of-the-art SSDA approaches demonstrate that the proposed model effectively cleans up the noise within the source labels and exhibits superior performance over those approaches across benchmark datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.