Abstract:A regional-level and dimensionless analysis for designing a domestic rainwater harvesting system (DRWHS) was developed. To consider various combinations of water demand, storage capacity, effective roof area, and rainfall in DRWHS design, two dimensionless ratios were used, namely, demand fraction and storage fraction, along with a relationship between the two ratios. Firstly, Northern Taiwan was divided into four sub-regions through cluster analysis based on the average annual 10-day rainfall distribution at rainfall stations and administrative districts. Easy-to-use dimensionless curves between demand fraction and storage fraction were obtained for five rainwater supply reliabilities of the DRWHS for the four sub-regions. Based on the dimensionless curves, a nomogram was constructed for designing DRWHSs at a rainwater supply reliability of 95% in the sub-region I. Storage capacities determined from the dimensionless curves showed a close fit with those determined from simulated values, but were larger than the values estimated from the method presented in the Green Building Evaluation Manual in most situations. The methodology developed herein can be used effectively for the preliminary design of a DRWHS and for overcoming the difficulties faced in designing a DRWHS without rainfall data and with incomplete rainfall data.
Domestic rainwater harvesting (DRWH) is widely recognized as an alternative source of water in Taiwan because of water shortages. This suggests that rainwater potential should be maximized and quantified. In this article, we assess the potential of DRWH at a national level. To consider the climatic, building characteristic, economic, and ecological aspects of DRWH, we propose three categories: (1) theoretical; (2) available; and (3) environmental bearable rainwater potential. Four main steps were followed to develop the proposed framework: (1) Fifteen rainfall zones across Taiwan were generated through cluster analysis based on the average annual 10-day rainfall distributions of rainfall stations and administrative districts; (2) The roof area in each rainfall zone was estimated using a geographic information system (GIS) and land use classification database; (3) The weighted percentage of rainwater use in each rainfall zone was determined by the optimal point on the storage capacity and rainwater supply reliability curve for an equivalent building from each building type; (4) The percentage of the total roof area used to harvest rainwater in each region depends on the downstream impact of the stream flow. The procedures developed in this study constitute an effective tool for preliminarily estimation of the national DRWH potential.
OPEN ACCESSWater 2014, 6 3225
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.