Glucosinolates, their hydrolysis products and primary metabolites were analyzed in five pak choi cultivars to determine the effect of methyl jasmonate (MeJA) on metabolite flux from primary metabolites to glucosinolates and their hydrolysis products. Among detected glucosinolates (total 14 glucosinolates; 9 aliphatic, 4 indole and 1 aromatic glucosinolates), indole glucosinolate concentrations (153–229%) and their hydrolysis products increased with MeJA treatment. Changes in the total isothiocyanates by MeJA were associated with epithiospecifier protein activity estimated as nitrile formation. Goitrin, a goitrogenic compound, significantly decreased by MeJA treatment in all cultivars. Changes in glucosinolates, especially aliphatic, significantly differed among cultivars. Primary metabolites including amino acids, organic acids and sugars also changed with MeJA treatment in a cultivar-specific manner. A decreased sugar level suggests that they might be a carbon source for secondary metabolite biosynthesis in MeJA-treated pak choi. The result of the present study suggests that MeJA can be an effective agent to elevate indole glucosinolates and their hydrolysis products and to reduce a goitrogenic compound in pak choi. The total glucosinolate concentration was the highest in “Chinese cabbage” in the control group (32.5 µmol/g DW), but indole glucosinolates increased the greatest in “Asian” when treated with MeJA.
Methyl jasmonate (MeJA), synthesized in the jasmonic acid (JA) pathway, has been found to upregulate glucosinolate (GS) biosynthesis in plant species of the Brassicaceae family. Exogenous application of MeJA has shown to increase tissue GS concentrations and the formation of myrosinase-mediated GS hydrolysis products (GSHPs). In vitro and in vivo assays have demonstrated the potential health-promoting effects of certain GSHPs. MeJA is also known to elicit and induce genes associated with defense mechanisms to insect herbivory in Brassica species. To investigate the relationship between MeJA-induced GS biosynthesis and insect defense, three treatments were applied to “Red Russian” kale (Brassicae napus var. pabularia) seedlings: (1) a 250 µM MeJA leaf spray treatment; (2) leaf infestation with larvae of the cabbage looper (Trichoplusia ni (Hübner)); (3) control treatment (neither larval infestation nor MeJA application). Samples of leaf tissue from the three treatments were then assayed for changes in GS and GSHP concentrations, GS gene biosynthesis expression, and myrosinase activity. Major differences were observed between the three treatments in the levels of GS accumulation and GS gene expression. The insect-damaged samples showed significantly lower aliphatic GS accumulation, while both MeJA and T. ni infestation treatments induced greater accumulation of indolyl GS. The gene expression levels of CYP81F4, MYB34, and MYB122 were significantly upregulated in samples treated with MeJA and insects compared to the control group, which explained the increased indolyl GS concentration. The results suggest that the metabolic changes promoted by MeJA application and the insect herbivory response share common mechanisms of induction. This work provides potentially useful information for kale pest control and nutritional quality.
We report here the development of
an inexpensive and engaging laboratory-based
activity that can help students learn about the scientific method
and the role of plant epicuticular waxes and surfactant function on
waxy plant leaves as real life example in the agricultural industry.
Three each of nontreated collard leaves (Brassica oleraceae L. Acephala group) and brushed-leaves were sprayed with water to
demonstrate hydrophobicity of epicuticular waxes. Another set of three
nontreated collard leaves was sprayed with Tween 20 containing water
to demonstrate function of surfactant. Then, water retention rate
was calculated by subtracting between before and after spray treatments.
Water contact angles were measured by ImageJ software from nontreated
and brushed-leaves from pictures taken by students’ smartphone.
This lab activity provides a foundation for instruction on the importance
of the plant epicuticular waxes that is the outermost hydrophobic
barrier in agrochemical applications and the function of surfactant
on waxy leaf surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.