Neddylation, the covalent attachment of ubiquitin-like protein Nedd8, of the Cullin-RING E3 ligase family regulates their ubiquitylation activity. However, regulation of HECT ligases by neddylation has not been reported to date. Here we show that the C2-WW-HECT ligase Smurf1 is activated by neddylation. Smurf1 physically interacts with Nedd8 and Ubc12, forms a Nedd8-thioester intermediate, and then catalyses its own neddylation on multiple lysine residues. Intriguingly, this autoneddylation needs an active site at C426 in the HECT N-lobe. Neddylation of Smurf1 potently enhances ubiquitin E2 recruitment and augments the ubiquitin ligase activity of Smurf1. The regulatory role of neddylation is conserved in human Smurf1 and yeast Rsp5. Furthermore, in human colorectal cancers, the elevated expression of Smurf1, Nedd8, NAE1 and Ubc12 correlates with cancer progression and poor prognosis. These findings provide evidence that neddylation is important in HECT ubiquitin ligase activation and shed new light on the tumour-promoting role of Smurf1.
Intrathymic CD4/CD8 differentiation is a process that establishes the mutually exclusive expression profiles of the CD4 and CD8 T cell lineage. The RUNX3-mediated silencing of CD4 in CD8 lineage cells has been well documented; however, it is unclear how CD8 is silenced during CD4 lineage differentiation. In this study, we report that, by directly binding the CD8 locus, ThPOK works as a negative regulator that mediates the deacetylation of Cd8 genes and repositions the CD8 alleles close to heterochromatin during the development of the CD4 lineage. The ectopic expression of ThPOK resulted in increased recruitment of histone deacetylases at Cd8 loci; the enhanced deacetylation of Cd8 genes eventually led to impaired Cd8 transcription. In the absence of ThPOK, the enhanced acetylation and transcription of Cd8 genes were observed. The results of these studies showed that Cd8 loci are the direct targets of ThPOK, and, more importantly, they provide new insights into CD8 silencing during CD4 lineage commitment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.