synopsisThe thermal conductivities of polystyrene and polyethylene containing several different particulate solids were measured over a range of solid concentrations. Experimental data were compared with results predicted by theoretical models for two-phase media. The equations of Bruggeman and Cheng-Vachon both gave reasonable agreement with measured results. The applicability of these equations does not appear to depend upon the structure of the polymer.
A molecularly imprinted film was fabricated, in the presence of epitope-peptides, onto a quartz crystal microbalance (QCM) chip. These five peptides are known linear or conformational epitopes of the anthrax protective antigen PA(83). Imprinting resulted in an epitope-cavity with affinity for the corresponding template. With the use of a basic monomer, the binding-effect was further enhanced increasing the affinity to nanomolar levels. The affinities of the peptide to their corresponding molecularly induced polymers (MIPs) were more closely related to the molecular weight of the analyte than to the number of residues. All epitope-cavities differentiated their epitope region on the protective antigen PA(83) as well as the corresponding furin cleavage fragments PA(63) and PA(20). The QCM chip differential response to the protective antigen fragment was observed in the picomolar range, thus demonstrating a method to manipulate protein on the surface with defined orientation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.