PTEN (phosphatase and tensin homologue) is a phosphatase that dephosphorylates both protein and phosphoinositide substrates. It is mutated in a variety of human tumours and has important roles in a diverse range of biological processes, including cell migration and chemotaxis. PTEN's intracellular localization and presumably activity are regulated by chemoattractants in Dictyostelium and mouse neutrophils. However, the mechanisms for its regulation remain elusive. Here we show that RhoA and Cdc42, members of the Rho family of small GTPases, regulate the intracellular localization of PTEN in leukocytes and human transfected embryonic kidney cells. In addition, active RhoA is able to stimulate the phospholipid phosphatase activity of PTEN in human embryonic kidney cells and leukocytes, and this regulation seems to require RhoA's downstream effector, RhoA-associated kinase (Rock). Furthermore, we have identified key residues on PTEN that are required for its regulation by the small GTPase, and show that small GTPase-mediated regulation of PTEN has a significant role in the regulation of chemotaxis.
The specification and differentiation of serotonergic (5-HT) neurons require both extrinsic signaling molecules and intrinsic transcription factors to work in concert or in cascade. Here we identify the genetic cascades that control the specification and differentiation of 5-HT neurons in mice. A major determinant in the cascades is an LIM homeodomain-containing gene, Lmx1b, which is required for the development of all 5-HT neurons in the central nervous system. Our results suggest that, during development of 5-HT neurons, Lmx1b is a critical intermediate factor that couples Nkx2-2-mediated early specification with Pet1-mediated terminal differentiation. Moreover, our data indicate that genetic cascades controlling the caudal and rostral 5-HT neurons are distinct, despite their shared components.
Postmitotic neurons in the developing cortex migrate along radial glial fibers to their proper location in the cortical plate and form the layered structure. Here we report that the radial migration of rat layer II/III cortical neurons requires guidance by the extracellular diffusible factor Semaphorin-3A (Sema3A). This factor is expressed in a descending gradient across the cortical layers, whereas its receptor neuropilin-1 (NP1) is highly expressed in migrating neurons. Downregulation or conditional knockout of NP1 in newborn cortical neurons impedes their radial migration by disrupting their radial orientation during migration without altering their cell fate. Studies in cultured cortical slices further show that the endogenous gradient of Sema3A is required for the proper migration of newborn neurons. In addition, transwell chemotaxis assays show that isolated newborn neurons are attracted by Sema3A. Thus, Sema3A may function as a chemoattractive guidance signal for the radial migration of newborn cortical neurons toward upper layers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.