With growing concern over world environmental problems and increasing legislative restriction on using lead and lead-containing materials, a feasible replacement for lead-based piezoceramics is desperately needed. Herein, we report a large piezoelectric strain (d*) of 470 pm/V and a high Curie temperature (T) of 243 °C in (NaK)NbO-(BiLi)TiO-BaZrO lead-free ceramics by doping MnO. Moreover, excellent temperature stability is also observed from room temperature to 170 °C (430 pm/V at 100 °C and 370 pm/V at 170 °C). Thermally stimulated depolarization currents (TSDC) analysis reveals the reduced defects and improved ferroelectricity in MnO-doped piezoceramics from a macroscopic view. Local poling experiments and local switching spectroscopy piezoresponse force microscopy (SS-PFM) demonstrates the enhanced ferroelectricity and domain mobility from a microscopic view. Distinct grain growth and improvement in phase angle may also account for the enhancement of piezoelectric properties.
Flexible strain sensors have a wide range of applications in biomedical science, aerospace industry, portable devices, precise manufacturing, etc. However, the manufacturing processes of most flexible strain sensors previously reported have usually required high manufacturing costs and harsh experimental conditions. Besides, research interests are often focused on improving a single attribute parameter while ignoring others. This work aims to propose a simple method of manufacturing flexible graphene-based strain sensors with high sensitivity and fast response. Firstly, oxygen plasma treats the substrate to improve the interfacial interaction between graphene and the substrate, thereby improving device performance. The graphene solution is then sprayed using a soft PET mask to define a pattern for making the sensitive layer. This flexible strain sensor exhibits high sensitivity (gauge factor ~100 at 1% strain), fast response (response time: 400–700 μs), good stability (1000 cycles), and low overshoot (<5%) as well. Those processes used are compatible with a variety of complexly curved substrates and is expected to broaden the application of flexible strain sensors.
Background: Myocardial perfusion (MP) SPECT is a well-established method for diagnosing cardiac disease, yet its radiation risk poses safety concern. This study aims to apply and evaluate the use of Pix2Pix generative adversarial network (Pix2Pix GAN) in denoising low dose MP SPECT images.Methods: One hundred male and female patients with different 99m Tc-sestamibi activity distributions, organ and body sizes were simulated by a population of digital 4D Extended Cardiac Torso (XCAT) phantoms.Realistic noisy SPECT projections of full dose of 987 MBq injection and 16 min acquisition, and low dose ranged from 1/20 to 1/2 of the full dose, were generated by an analytical projector from the right anterior oblique (RAO) to the left posterior oblique (LPO) positions. Additionally, twenty patients underwent ~1,184 MBq 99m Tc-sestamibi stress SPECT/CT scan were also retrospectively recruited for the study. For each patient, low dose SPECT images (7/10 to 1/10 of full dose) were generated from the full dose list mode data. Our Pix2Pix GAN model was trained with full dose and low dose reconstructed SPECT image pairs. Normalized mean square error (NMSE), structural similarity index (SSIM), coefficient of variation (CV), full-width-at-half-maximum (FWHM) and relative defect size differences (RSD) of Pix2Pix GAN processed images were evaluated along with a reference convolutional auto encoder (CAE) network and postreconstruction filters.Results: NMSE values of 0.0233±0.004 vs. 0.0249±0.004 and 0.0313±0.007 vs. 0.0579±0.016 were obtained on 1/2 and 1/20 dose level for Pix2Pix GAN and CAE in the simulation study, while they were 0.0376±0.010 vs. 0.0433±0.010 and 0.0907±0.020 vs. 0.1186±0.025 on 7/10 and 1/10 dose level in the clinical study. Similar results were also obtained from the SSIM, CV, FWHM and RSD values. Overall, the use of Pix2Pix GAN was superior to other denoising methods in all physical indices, particular in the lower dose levels in the simulation and clinical study.
Conclusions:The Pix2Pix GAN method is effective to reduce the noise level of low dose MP SPECT.Further studies on clinical performance are warranted to demonstrate its full clinical effectiveness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.