The parameters of prototypes of topological generators with resistive superconducting switches made of low temperature superconductors (LTSCs) and high temperature superconductors (HTSCs) are presented. The experimental results are presented. A technical evaluation of the use of topological generators for the precise supply of LTSC and HTSC windings of magnetic resonance imaging is given.
Background: The methods of calculation and elements of the technology for creating heteropolar magnetic systems of levitation, lateral stabilization and a rotor-runner of a traction linear synchronous motor for the development of the transport technology "Russian Maglev" in order to achieve an increased levitation gap of 0.2 m, reduce the threshold speed of the exit vehicle in levitation mode up to 10 km/h. Aim: to develop methods for calculating and designing heteropolar poles from elementary permanent magnets, coils of the same type based on composite low-temperature superconductors and high-temperature tape superconductors of the second generation and a step-by-step technology for their production. Tasks: Creation of an on-board magnetic system of levitation and lateral stabilization, allowing to provide a levitation gap of 0.2 m, a threshold value of vehicle speed of 10 km/h when transition to levitation mode, to reduce stray magnetic fields to the level of the natural field of terrestrial magnetism of 50 T; Creation of a rotor-runner of a linear synchronous motor with an ironless stator with a power of 10 MW. Methods: outlines the main calculation methodologies: "analysis" and "synthesis". The "analysis" methodology is adopted in solving the "direct" calculation problem, when the configuration of the magnetic system is set and the magnetic field in the working area is calculated, and, if necessary, the stray magnetic fields. This methodology can be effectively applied if there is experience in creating magnetic systems. Otherwise, the "synthesis" methodology is applied, which is used in solving the "inverse" calculation problem, in which the picture of the distribution of the magnetic field in the working zone is set and the configuration of the magnetic system is found (synthesized). Results of the study performed: The parameters and characteristics of high-energy permanent magnets made of rare-earth metals, low-temperature and high-temperature superconducting winding materials have been analyzed, the choice of permanent magnets and superconducting winding material has been made; Calculations of the magnetic system of permanent magnets in the "Halbach assembly" and in the traditional assembly in a toothed ferromagnetic core have been carried out; Calculations of a track coil with a rectangular cross-section of the winding are performed; Methods for calculating and optimizing superconducting magnetic systems from a set of similar track modules have been developed; Conclusions: The results of the performed fundamental research will allow starting the calculation, design and construction of conveyor-main passenger and freight lines of maglev transport, as well as urban public transport.
The solution of the problem of organizing super-high-speed ground transport can be a combined transport system that presupposes the movement of a transport unit in a rarefied environment of an unlimited space, using the principles of magnetic levitation. The use of such a system will significantly increase the speed of the transport unit up to the supersonic range and dramatically increase, for example, the volumes of cargo transportation due to the following factors: 1. Reduction of aerodynamic resistance of air during movement; 2. The lack of direct contact of the transport unit with the lower structure of the path and, as a consequence, the complete absence of friction; 3. Separate leased lines allow the use of structures to ensure a significant increase in cargo traffic. Problem statement: study of the basic principles of motion of the transport system based on magnetic levitation in a rarefied environment, modeling of key processes, determination of the main parameters of the new transport system and establishing their optimal ratio, reduced to safe and energy-efficient operation conditions, assessment of possible risks associated with the use of this type transport, both for freight and passenger transportation.
The superconducting levitation device comprises a stationary magnetic rail of permanent magnets and a cryostat on a vehicle with a second-generation high-temperature tape superconductor placed in the cryostat, folded in a stack or wound by a coil on a non-magnetic frame without electrical connection of the ends and the transport current. Cool tape high-temperature superconductor of the second generation, folded in a stack or wound on a non magnetic frame in the form of axisymmetric or track coil, without electric connections of the ends and a transport current, behaves as a massive sample of a superconductor and the Meissner Oxenfeld effect, the magnetic field created by the magnetic rail is displaced from the volume of the superconductor, causing the power of levitation and the vehicle hangs over the track structure. The high critical parameters of the second-generation high-temperature superconductor belt ensure efficient operation of the superconducting levitation device. Aim: To demonstration the technical feasibility and efficiency of creating a levitation unit based on the use of a second-generation high-temperature superconductor and permanent magnets made of rare earth metals. Methods: Calculations of the magnetic field distribution in the combination of a magnetic rail and a massive superconductor, preliminary design of the levitation unit and experimental studies on the model. Results: Experiments on a model of a superconducting levitation device confirmed the efficiency of this technical solution and its effectiveness. Conclusion: an original technical solution is proposed that allows to significantly improve the energy characteristics of the levitation node by using a second-generation high-temperature superconductor operating in a passive mode without a transport current, using the partial Meissner-Oxenfeld effect and the engagement of quantized magnetic flux strands at the pinning centers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.