This study aims to investigate the characteristics of gas-liquid countercurrent contact processes. In spray towers or other applications, several drops containing pollutants are entrained by the updraft flue gas, which can easily cause environmental pollution. Traditionally, this drop entrainment phenomenon is alleviated by increasing the diameter of the drops. However, the breakup of a large drop would also cause drop entrainment to become serious, a process referred to as secondary atomization. Herein, we propose the boundary of three drop modes in the updraft: drop falling mode, reverse entrainment mode, and breakup entrainment mode. The critical Weber number (We) is the key dimensionless number marking the beginning of the drop breakup. The ratio of the drag force to gravity and We are proposed as criteria for the drop entrainment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.