The Beijing 2008 Forecast Demonstration Project (B08FDP) included a variety of nowcasting systems from China, Australia, Canada, and the United States. A goal of the B08FDP was to demonstrate state-of-the-art nowcasting systems within a mutual operational setting. The nowcasting systems were a mix of radar echo extrapolation methods, numerical models, techniques that blended numerical model and extrapolation methods, and systems incorporating forecaster input. This paper focuses on the skill of the nowcasting systems to forecast convective storms that threatened or affected the Summer Olympic Games held in Beijing, China. The topography surrounding Beijing provided unique challenges in that it often enhanced the degree and extent of storm initiation, growth, and dissipation, which took place over short time and space scales. The skill levels of the numerical techniques were inconsistent from hour to hour and day to day and it was speculated that without assimilation of real-time radar reflectivity and Doppler velocity fields to support model initialization, particularly for weakly forced convective events, it would be very difficult for models to provide accurate forecasts on the nowcasting time and space scales. Automated blending techniques tended to be no more skillful than extrapolation since they depended heavily on the models to provide storm initiation, growth, and dissipation. However, even with the cited limitations among individual nowcasting systems, the Chinese Olympic forecasters considered the B08FDP human consensus forecasts to be useful. Key to the success of the human forecasts was the development of nowcasting rules predicated on the character of Beijing convective weather realized over the previous two summers. Based on the B08FDP experience, the status of nowcasting convective storms and future directions are presented.
China has increased its vegetation coverage and enhanced its terrestrial carbon sink through ecological restoration since the end of the 20th century. However, the temporal variation in vegetation carbon sequestration remains unclear, and the relative effects of climate change and ecological restoration efforts are under debate. By integrating remote sensing and machine learning with a modelling approach, we explored the biological and physical pathways by which both climate change and human activities (e.g., ecological restoration, cropland expansion, and urbanization) have altered Chinese terrestrial ecosystem structures and functions, including vegetation cover, surface heat fluxes, water flux, and vegetation carbon sequestration (defined by gross and net primary production, GPP and NPP). Our study indicated that during 2001–2018, GPP in China increased significantly at a rate of 49.1–53.1 TgC/yr2, and the climatic and anthropogenic contributions to GPP gains were comparable (48%–56% and 44%–52%, respectively). Spatially, afforestation was the dominant mechanism behind forest cover expansions in the farming‐pastoral ecotone in northern China, on the Loess Plateau and in the southwest karst region, whereas climate change promoted vegetation cover in most parts of southeastern China. At the same time, the increasing trend in NPP (22.4–24.9 TgC/yr2) during 2001–2018 was highly attributed to human activities (71%–81%), particularly in southern, eastern, and northeastern China. Both GPP and NPP showed accelerated increases after 2010 because the anthropogenic NPP gains during 2001–2010 were generally offset by the climate‐induced NPP losses in southern China. However, after 2010, the climatic influence reversed, thus highlighting the vegetation carbon sequestration that occurs with ecological restoration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.