The role of Fat Mass and Obesity-associated protein (FTO) and its substrate N6-methyladenosine (m6A) in mRNA processing and adipogenesis remains largely unknown. We show that FTO expression and m6A levels are inversely correlated during adipogenesis. FTO depletion blocks differentiation and only catalytically active FTO restores adipogenesis. Transcriptome analyses in combination with m6A-seq revealed that gene expression and mRNA splicing of grouped genes are regulated by FTO. M6A is enriched in exonic regions flanking 5′- and 3′-splice sites, spatially overlapping with mRNA splicing regulatory serine/arginine-rich (SR) protein exonic splicing enhancer binding regions. Enhanced levels of m6A in response to FTO depletion promotes the RNA binding ability of SRSF2 protein, leading to increased inclusion of target exons. FTO controls exonic splicing of adipogenic regulatory factor RUNX1T1 by regulating m6A levels around splice sites and thereby modulates differentiation. These findings provide compelling evidence that FTO-dependent m6A demethylation functions as a novel regulatory mechanism of RNA processing and plays a critical role in the regulation of adipogenesis.
The host immune response to bone biomaterials is vital in determining scaffold fates and bone regeneration outcomes. The nanometer-scale interface of biomaterials, which independently controls physical inputs to cells, regulates osteogenic differentiation of stem cells and local immune response. Herein, we fabricated biomimetic hierarchical intrafibrillarly mineralized collagen (HIMC) with a bone-like staggered nanointerface and investigated its immunomodulatory properties and mesenchymal stem cell (MSC) recruitment during endogenous bone regeneration. The acquired HIMC potently induced neo-bone formation by promoting CD68+CD163+ M2 macrophage polarization and CD146+STRO-1+ host MSC recruitment in critical-sized bone defects. Mechanistically, HIMC facilitated M2 macrophage polarization and interleukin (IL)-4 secretion to promote MSC osteogenic differentiation. An anti-IL4 neutralizing antibody significantly reduced M2 macrophage-mediated osteogenic differentiation of MSCs. Moreover, HIMC-loaded-IL-4 implantation into critical-sized mandible defects dramatically enhanced bone regeneration and CD68+CD163+ M2 macrophage polarization. The depletion of monocyte/macrophages by clodronate liposomes significantly impaired bone regeneration by HIMC, but did not affect MSC recruitment. Thus, in emulating natural design, the hierarchical nanointerface possesses the capacity to recruit host MSCs and promote endogenous bone regeneration by immunomodulation of macrophage polarization through IL-4.
Key points• Pan-cancer computational histopathology analysis with deep learning extracts histopathological patterns and accurately discriminates 28 cancer and 14 normal tissue types • Computational histopathology predicts whole genome duplications, focal amplifications and deletions, as well as driver gene mutations • Wide-spread correlations with gene expression indicative of immune infiltration and proliferation • Prognostic information augments conventional grading and histopathology subtyping in the majority of cancers AbstractHere we use deep transfer learning to quantify histopathological patterns across 17,396 H&E stained histopathology image slides from 28 cancer types and correlate these with underlying genomic and transcriptomic data. Pan-cancer computational histopathology (PC-CHiP) classifies the tissue origin across organ sites and provides highly accurate, spatially resolved tumor and normal distinction within a given slide. The learned computational histopathological features correlate with a large range of recurrent genetic aberrations, including whole genome duplications (WGDs), arm-level copy number gains and losses, focal amplifications and deletions as well as driver gene mutations within a range of cancer types. WGDs can be predicted in 25/27 cancer types (mean AUC=0.79) including those that were not part of model training. Similarly, we observe associations with 25% of mRNA transcript levels, which enables to learn and localise histopathological patterns of molecularly defined cell types on each slide. Lastly, we find that computational histopathology provides prognostic information augmenting histopathological subtyping and grading in the majority of cancers assessed, which pinpoints prognostically relevant areas such as necrosis or infiltrating lymphocytes on each tumour section. Taken together, these findings highlight the large potential of PC-CHiP to discover new molecular and prognostic associations, which can augment diagnostic workflows and lay out a rationale for integrating molecular and histopathological data.
Wnt/β-catenin signalling is widely implicated in embryogenesis, tissue homeostasis and tumorigenesis. The key event in Wnt signalling activation is β-catenin accumulation, which is controlled by both its production and degradation. However, much more emphasis has been placed on the understanding of its degradation. Here, we show that the synthesis of β-catenin protein, which requires a group of serine/arginine-rich splicing factors (SRSF), also contributes to its tumorigenic activity. Overexpression of SRSF1 and SRSF9 promote β-catenin accumulation via the recruitment of β-catenin mRNA and by enhancing its translation in an mTOR-dependent manner. We further demonstrate that, like SRSF1, SRSF9 is also an oncogene, and is frequently overexpressed in multiple types of human tumours. Finally, our results suggest that promoting degradation and blocking production of β-catenin synergistically reduce β-catenin levels under pathological conditions and that a combinational therapy could be a promising approach for the treatment of cancer patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.