Experimental results are presented on the linear development of a wave train in a three-dimensional supersonic boundary layer on a swept wing with 45°-sweep angle at Mach number M = 2.0. Artificial disturbances in the boundary layer were excited by periodical glow discharge mainly at frequencies 10 and 20 kHz. The maximum of the controlled pulsation amplitude was localized in the boundary layer in normal to the swept-wing surface direction for spatial amplitude distributions as well as for the amplitude wave spectra. The asymmetry of the wave characteristics of the unstable disturbances in the boundary layer of a swept wing caused by the presence of crossflow is confirmed. The stability characteristics, including dispersion relations and amplification rates over a wide range of wave inclination angles, are obtained for disturbances with prescribed frequencies 10 and 20 kHz.
A joint theoretical and experimental investigation of the influence of the surface permeability and roughness on the stability and laminar–turbulent transition of a supersonic flat-plate boundary layer at a free-stream Mach number of $M_{\infty }=2$ has been performed. Good quantitative agreement of the experimental data obtained with artificially generated disturbances performed on models with various porous inserts and calculations based on linear stability theory has been achieved. An increase of the pore size and porous-coating thickness leads to a boundary layer destabilization that accelerates the laminar–turbulent transition. It is shown that as a certain (critical) roughness value is reached, with an increase in the thickness of the rough and porous coating, the boundary layer stability diminishes and the laminar–turbulent transition is displaced towards the leading edge of the model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.