Membranous nephropathy (MN) is the major cause of nephrotic syndrome with special pathological features, caused by the formation of immune complexes in the space between podocytes and the glomerular basement membrane. In idiopathic membranous nephropathy (IMN) the immune complexes are formed by circulating antibodies binding mainly to one of two naturally-expressed podocyte antigens: the M-type receptor for secretory phospholipase A2 (PLA2R1) and the Thrombospondin type-1 domain-containing 7A (THSD7A). Formation of antibodies against PLA2R1 is much more common, accounting for 70–80% of IMN. However, the mechanism of anti-podocyte antibody production in IMN is still unclear. In this review, we emphasize that the exposure of PLA2R1 is critical for triggering the pathogenesis of PLA2R1-associated MN, and propose the potential association between inflammation, pollution and PLA2R1. Our review aims to clarify the current research of these precipitating factors in a way that may suggest future directions for discovering the pathogenesis of MN, leading to additional therapeutic targets and strategies for the prevention and early treatment of MN.
Follicular regulatory T (Tfr) cell can effectively regulate humoral immunity, but its function and mechanism in antibody-mediated rejection (AMR) after organ transplantation remains unclear. Here we detected follicular helper T (Tfh) cell subsets in 88 renal transplant patients with chronic renal allograft dysfunction (40 with AMR and 48 without AMR). The ratio of Tfr cells in renal graft tissues and peripheral blood of AMR patients significantly decreased, while the ratio of IL-21-producing Tfh cells (Tfh2 and Tfh17) significantly increased, compared to non-AMR patients. When tested in functional assays, Tfr cells from both AMR and non-AMR patients exerted equivalent inhibitory function. Tfr cell transplantation or CTLA-4 virus transfection could significantly inhibit IL-21 secretion from Tfh cells of these patients, further suppress the proliferation and differentiation of B cells. CTLA-4 blocking, IL-10 and TGF-β neutralization could partially weaken such inhibitory effect of Tfr cells. Besides, our study found that sirolimus reduced the ratio of Tfr cells, while cyclosporine and tacrolimus had no significant effect on Tfr cells. In a word, renal transplant patients with AMR have low proportion of Tfr cells but these cell exerted normal function.
Baicalin is an important flavonoid compound THaT is isolated from the Scutellaria baicalensis Georgi chinese herb and plays a critical role in anti-oxidative, anti-inflammatory, anti-infection and anti-tumor functions. although baicalin can suppress the proliferation of tumor cells, the underlying mechanisms of baicalin in bleomycin (BLM)-induced pulmonary fibrosis remain to be elucidated. Thus, the aim of the present study was to determine the role of baicalin in pulmonary fibrosis and fibroblast proliferation in rats. Hematoxylin and eosin (H&E) and Masson staining were used to measure the morphology of pulmonary fibrosis, ELIASA kits were used to test the ROS and inflammation, and western blotting and Tunel were performed to study the apoptosis proteins. In vitro, MTT assay, flow cytometry, western blotting and immunofluorescence were performed to investigate the effects of baicalin on proliferation of fibroblasts. The most significantly fibrotic changes were identified in the lungs of model rats at day 28. Baicalin (50 mg/kg) attenuated the degree of pulmonary fibrosis, and the hydroxyproline content of the lung tissues was decreased in the baicalin group, compared with the BLM group. Further investigation revealed that baicalin significantly increased glutathione peroxidase (GSH-px), total-superoxide dismutase (T-Sod) and glutathione (GSH) levels, whilst decreasing that of serum malondialdehyde (MDA). TUNEL-positive cells were significantly decreased in rats treated with baicalin group, compared with the model group. Furthermore, it was found that BLM promoted fibroblasts viability in a dose-dependent manner in vivo, which was restricted following treatment with different concentrations of baicalin. Moreover, BLM promoted the expression levels of cyclin a, d and e, proliferating cell nuclear antigen, phosphorylated (p)-AKT and p-calcium/calmodulin-dependent protein kinase type. BLM also promoted the transition of cells from the G 0 /G 1 phase to the G 2 /M and S phases, and increased the intracellular ca 2+ concentration, which was subsequently suppressed by baicalin. Collectively, the results of the present study suggested that baicalin exerted a suppressive effect on BLM-induced pulmonary fibrosis and fibroblast proliferation.
Berberine has significant antibacterial and antipyretic effects and is a commonly used drug for treating infectious diarrhoea. The current research data show that the pharmacological effects of berberine are numerous and complex, and researchers have been enthusiastic about this field. To allow researchers to quickly understand the field and to provide references for the direction of research, using bibliometrics, we analysed 1426 articles, dating from 1985 to 2018, in the field of berberine pharmacology. The research articles we found came from 69 countries/regions, 1381 institutions, 5675 authors, and 325 journals; they contained 3794 key words; they were written in 7 languages; and they were of 2 article types. This study summarizes and discusses the evolution of the historical themes of berberine pharmacology as well as the status quo and the future development directions from a holistic perspective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.