Melatonin (N-acetyl-5-methoxytryptamine) is an important biological hormone in many abiotic stress responses and developmental processes. In this study, the protective roles of melatonin were investigated by measuring the antioxidant defense system and photosynthetic characteristics in maize under salt stress. The results indicated that NaCl treatment led to the decrease in plant growth, chlorophyll contents and photochemical activity of photosystem II (PSII). However, the levels of reactive oxygen species increased significantly under salt stress. Meanwhile, we found that application of exogenous melatonin alleviated reactive oxygen species burst and protected the photosynthetic activity in maize seedlings under salt stress through the activation of antioxidant enzymes. In addition, 100 μM melatonin-treated plants showed high photosynthetic efficiency and salinity. Immunoblotting analysis of PSII proteins showed that melatonin application alleviated the decline of 34 kDa PSII reaction center protein (D1) and the increase of PSII subunit S protein. Taken together, our study promotes more comprehensive understanding in the protective effects of exogenous melatonin in maize under salt stress, and it may be involved in activation of antioxidant enzymes and regulation of PSII proteins.
To normalize a set of quantitative real-time PCR (q-PCR) data, it is essential to determine an optimal number/set of housekeeping genes, as the abundance of housekeeping genes can vary across tissues or cells during different developmental stages, or even under certain environmental conditions. In this study, of the 20 commonly used endogenous control genes, 13, 18 and 17 genes exhibited credible stability in 56 different tissues, 10 types of adipose tissue and five types of muscle tissue, respectively. Our analysis clearly showed that three optimal housekeeping genes are adequate for an accurate normalization, which correlated well with the theoretical optimal number (r ≥ 0.94). In terms of economical and experimental feasibility, we recommend the use of the three most stable housekeeping genes for calculating the normalization factor. Based on our results, the three most stable housekeeping genes in all analysed samples (TOP2B, HSPCB and YWHAZ) are recommended for accurate normalization of q-PCR data. We also suggest that two different sets of housekeeping genes are appropriate for 10 types of adipose tissue (the HSPCB, ALDOA and GAPDH genes) and five types of muscle tissue (the TOP2B, HSPCB and YWHAZ genes), respectively. Our report will serve as a valuable reference for other studies aimed at measuring tissue-specific mRNA abundance in porcine samples.
The coronavirus disease 2019 (COVID-19) pandemic caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) has become a global public health emergency. G-quadruplex, one of the non-canonical secondary structures, has shown potential antiviral values. However, little is known about the G-quadruplexes of the emerging SARS-CoV-2. Herein, we characterized the potential G-quadruplexes in both positive and negative-sense viral strands. The identified potential G-quadruplexes exhibited similar features to the G-quadruplexes detected in the human transcriptome. Within some bat- and pangolin-related betacoronaviruses, the G-tracts rather than the loops were under heightened selective constraints. We also found that the amino acid sequence similar to SUD (SARS-unique domain) was retained in SARS-CoV-2 but depleted in some other coronaviruses that can infect humans. Further analysis revealed that the amino acid residues related to the binding affinity of G-quadruplexes were conserved among 16,466 SARS-CoV-2 samples. Moreover, the dimer of the SUD-homology structure in SARS-CoV-2 displayed similar electrostatic potential patterns to the SUD dimer from SARS. Considering the potential value of G-quadruplexes to serve as targets in antiviral strategy, our fundamental research could provide new insights for the SARS-CoV-2 drug discovery.
Aurantio-obtusin, an anthraquinone compound, isolated from dried seeds of Cassia obtusifolia L. (syn. Senna obtusifolia; Fabaceae) and Cassia tora L. (syn. Senna tora). Although the biological activities of Semen Cassiae have been reported, the anti-inflammatory mechanism of aurantio-obtusin, its main compound, on RAW264.7 cells, remained unknown. We investigated the anti-inflammatory effect of aurantio-obtusin on lipopolysaccharide- (LPS)-induced RAW264.7 cells in vitro and elucidated the possible underlying molecular mechanisms. Nitric oxide production (NO) and prostaglandin E2 (PGE2) were measured by the Griess colorimetric method and enzyme-linked immunosorbent assay (ELISA), respectively. Protein expression levels of cyclooxygenase 2 (COX-2) were monitored by cell-based ELISA. Interleukin 6 (IL-6) and tumor necrosis factor-alpha (TNF-α) synthesis were analyzed using ELISA. The mRNA expression of nitric oxide synthase (iNOS), COX-2, and the critical pro-inflammatory cytokines (IL-6 and TNF-α) were detected by quantitative real-time PCR. Aurantio-obtusin significantly decreased the production of NO, PGE2, and inhibited the protein expression of COX-2, TNF-α and IL-6, which were similar to those gene expression of iNOS, COX-2, TNF-α and IL-6 (p < 0.01). Consistent with the pro-inflammatory gene expression, the Aurantio-obtusin efficiently reduced the LPS-induced activation of nuclear factor-κB in RAW264.7 cells. These results suggested that aurantio-obtusin may function as a therapeutic agent and can be considered in the further development of treatments for a variety of inflammatory diseases. Further studies may provide scientific evidence for the use of aurantio-obstusin as a new therapeutic agent for inflammation-related diseases.
We report here a clinical case of phaeohyphomycosis in an 18-year-old male giant panda (Ailuropoda melanoleuca). Skin lesions on the giant panda disappeared following 2 months of treatment with ketoconazole. Three months after discontinuing the treatment, there was a clinical and mycological relapse. The disease progression was no longer responsive to ketoconazole. Microscopy and polymerase chain reaction (PCR) analysis revealed that the infection was caused by Cladosporium cladosporioides. A 4-month treatment regime with Itraconazole oral solution (700 mg per day) successfully terminated the infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.