2435wileyonlinelibrary.com IntroductionQuantum dots (QDs), combined with unique optical, electrical properties and solution processed functional applications, have been studied intensively for decades. [ 1,2 ] Recently, Kovalenko and co-workers and Li and co-workers developed CsPbX 3 (X = Cl, Br, I) inorganic perovskite quantum dots (IPQDs), which exhibited ultrahigh photoluminescence (PL) quantum yields (QYs), lowthreshold lasing, and multicolor electroluminescence. However, the usual synthesis needs high temperature, inert gas protection, and localized injection operation, which are severely against applications. Moreover, the so unexpectedly high QYs are very confusing. Here, for the fi rst time, the IPQDs' roomtemperature (RT) synthesis, superior PL, underlying origins and potentials in lighting and displays are reported. The synthesis is designed according to supersaturated recrystallization (SR), which is operated at RT, within few seconds, free from inert gas and injection operation. Although formed at RT, IPQDs' PLs have QYs of 80%, 95%, 70%, and FWHMs of 35, 20, and 18 nm for red, green, and blue emissions. As to the origins, the observed 40 meV exciton binding energy, halogen self-passivation effect, and CsPbX 3 @X quantumwell band alignment are proposed to guarantee the excitons generation and high-rate radiative recombination at RT. Moreover, such superior optical merits endow them with promising potentials in lighting and displays, which are primarily demonstrated by the white light-emitting diodes with tunable color temperature and wide color gamut.
Additives are known to improve the performance of organic photovoltaic devices based on mixtures of a low bandgap polymer, poly[2,6‐(4,4‐bis(2‐ethylhexyl)‐4H‐cyclopenta[2,1‐b;3,4‐b′]‐dithiophene)‐alt‐4,7‐(2,1,3‐benzothiadiazole)] (PCPDTBT) and [6,6]‐phenyl C61‐butyric acid methyl ester (PCBM). The evolution of the morphology during the evaporation of the mixed solvent, which comprises additive and chlorobenzene (CB), is investigated by in‐situ grazing incidence X‐ray scattering, providing insight into the key role the additive plays in developing a multi‐length‐scale morphology. Provided the additive has a higher vapor pressure and a selective solubility for PCBM, as the host solvent (CB) evaporates, the mixture of the primary solvent and additive becomes less favorable for the PCPDTBT, while completely solubilizing the PCBM. During this process, the PCPDTBT first crystallizes into fibrils and then the PCBM, along with the remaining PCPDTBT, is deposited, forming a phase‐separated morphology comprising domains of pure, crystalline PCPDTBT fibrils and another domain that is a PCBM‐rich mixture with amorphous PCPDTBT. X‐ray/neutron scattering and diffraction methods, in combination with UV–vis absorption spectroscopy and transmission electron microscopy, are used to determine the crystallinity and phase separation of the resultant PCPDTBT/PCBM thin films processed with or without additives. Additional thermal annealing is carried out and found to change the packing of the PCPDTBT. The two factors, degree of crystallinity and degree of phase separation, control the multi‐length‐scale morphology of the thin films and significantly influence device performance.
The structure–property relationships of PTB7‐phenyl‐C61‐butyric acid methyl ester (PCBM)‐based organic photovoltaics are investigated. The morphology is investigated in an active layer setting where a multi‐length‐scale morphology is observed using a solvent additive‐assisted film processing. This multi‐length‐scale structure consists of a phase separated morphology with a characteristic length scale of ≈30 nm, which is critical for producing large currents in devices; a second length scale of ≈130 nm, arises from face‐on PTB7 crystalline aggregates. This latter morphological feature is also observed in films prepared without the use of an additive. By observing the structure formation in situ during solvent evaporation for blade coated thin films, the additive is found to promote the formation of ordered domains of the PTB7 at an earlier stage during the solvent evaporation, which is critical in the development of the final morphology. In studies on PTB7/PCBM bilayers, PCBM is found to diffuse into the PTB7 layer. However, the performance of devices prepared in this manner is low. This diffusion leads to a swelling of the PTB7 and a reduction in the crystallinity of the PTB7, reflecting the strong miscibility of PCBM with PTB7. The morphology resulting from the interdiffusion is single‐length‐scale with slightly large phase separation. This leads to devices with poor performance.
wileyonlinelibrary.comRecently, a new semiconductor nanomaterial system, all inorganic halide perovskite nanocrystals (IPNCs, CsPbX 3 , X = Cl, Br, I), have been reported to possess high stability, [ 1 ] ultrahigh photoluminescent quantum yield (PL QY), composition dependent luminescence covering the whole visible region withThe strong ionic character endows all-inorganic CsPbX 3 (X = Cl, Br, I) perovskite nanocrystals (NCs) with different chemical features from classical Cd-based NCs, especially when considering their interaction with polar solvents and surfactants. This has aroused intensive interest, but is still short of comprehensive understanding. More signifi cantly, above characteristic may be used to improve the quality of perovskite thin fi lms, which is crucial for the carrier transport inside optoelectronic devices. Here, an interesting recyclable dissolution-recyrstallization phenomenon of all-inorganic pervoskite, as well as its application on room temperature (RT) self-healing of compact and smooth carrier channels in ambient atmosphere for high-performance PDs with high stability is reported. First, according to solubility equilibrium principle, the size of CsPbBr 3 crystals can be reversibly tuned in the range of 10 nm-1 µm through washing with polar solvent or stirring with assistance of surfactants at RT. Second, such phenomenon is applied for signifi cant fi lm quality improvement by forming a liquid circumstance within fi lms, which can transport matter at surface and sharp parts into the gaps, healing themselves at RT. This strategy results in large-area, crack-free, low-roughness perovskite thin fi lms. Obviously, such improvement facilitates transport and extraction of carriers in the channels of devices, which has been evidenced by the improvement of performances of the corresponding PDs at ambient condition.
All-inorganic perovskites have high carrier mobility, long carrier diffusion length, excellent visible light absorption, and well overlapping with localized surface plasmon resonance (LSPR) of noble metal nanocrystals (NCs). The high-performance photodetectors can be constructed by means of the intrinsic outstanding photoelectric properties, especially plasma coupling. Here, for the first time, inorganic perovskite photodetectors are demonstrated with synergetic effect of preferred-orientation film and plasmonic with both high performance and solution process virtues, evidenced by 238% plasmonic enhancement factor and 10 on/off ratio. The CsPbBr and Au NC inks are assembled into high-quality films by centrifugal-casting and spin-coating, respectively, which lead to the low cost and solution-processed photodetectors. The remarkable near-field enhancement effect induced by the coupling between Au LSPR and CsPbBr photogenerated carriers is revealed by finite-difference time-domain simulations. The photodetector exhibits a light on/off ratio of more than 10 under 532 nm laser illumination of 4.65 mW cm . The photocurrent increases from 0.67 to 2.77 μA with centrifugal-casting. Moreover, the photocurrent rises from 245.6 to 831.1 μA with Au NCs plasma enhancement, leading to an enhancement factor of 238%, which is the most optimal report among the LSPR-enhanced photodetectors, to the best of our knowledge. The results of this study suggest that all-inorganic perovskites are promising semiconductors for high-performance solution-processed photodetectors, which can be further enhanced by Au plasmonic effect, and hence have huge potentials in optical communication, safety monitoring, and biological sensing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.