The aim of this paper is to provide a deep learning based method that can solve high-dimensional Fredholm integral equations. A deep residual neural network is constructed at a fixed number of collocation points selected randomly in the integration domain. The loss function of the deep residual neural network is defined as a linear least-square problem using the integral equation at the collocation points in the training set. The training iteration is done for the same set of parameters for different training sets. The numerical experiments show that the deep learning method is efficient with a moderate generalization error at all points. And the computational cost does not suffer from “curse of dimensionality” problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.