Two-dimensional (2D) ferromagnets with high Curie temperature TC are desirable for spintronics applications. However, they are rarely obtained in experiments mainly due to the challenge of synthesizing high-quality 2D crystals, and their TC values are below room temperature. Using first-principles calculations, we design a family of stable 2D FenGeTe2 (4 ≤ n ≤ 7) ultrathin films with coexisting itinerant and localized magnetism. Among them, 2D Fe3GeTe2 and Fe4GeTe2 are ferromagnetic metals with TC = 138 and 68 K; 2D Fe5GeTe2, Fe6GeTe2, and Fe7GeTe2 are Néel’s P-, R-, and R-type ferrimagnetic metals with TC = 320, 450, and 570 K. A thickness-induced magnetic phase transition originates from competition between itinerant and localized states, and also correlates with Fe3+ and Fe2+ content. A valence/orbital-dependent magnetic exchange model is proposed for these effects. Our results reveal a universal mechanism for magnetic coupling in complex magnetic systems.
We aimed to study the impact of surface modification of basalt fiber (BF) on the mechanical properties of basalt fiber-based epoxy composites. Four different types of pretreatment approaches to BF were used; then a silane coupling agent (KH550) was applied to further modify the pretreated BF, prior to the preparation of epoxy resin (EP)/BF composites. The combination of acetone (pre-treatment) and KH550 (formal surface treatment) for basalt fiber (BT-AT) imparted the EP/BF composite with the best performance in both tensile and impact strengths. Subsequently, such modified BF was introduced into the flame-retardant epoxy composites (EP/AP750) to prepare basalt fiber reinforced flame-retardant epoxy composite (EP/AP750/BF-AT). The fire behaviors of the composites were evaluated by vertical burning test (UL-94), limiting oxygen index (LOI) test and cone calorimetry. In comparison to the flame-retardant properties of EP/AP750, the incorporation of BF-AT slightly reduced LOI value from 26.3% to 25.1%, maintained the good performance in vertical burning test, but increased the peak of the heat release rate. Besides, the thermal properties and mechanical properties of the composites were investigated by thermogravimetric analysis (TGA), universal tensile test, impact test and dynamic mechanical analysis (DMA).
One‐dimensional (1D) magnetoelectric multiferroics are promising multifunctional materials for miniaturized sensors, actuators, and memories. However, 1D materials with both ferroelectricity and ferromagnetism are quite rare. Herein, using first‐principles calculations, a series of fullerene‐based 1D chains, namely U2C@C80‐M (M = Cr, Mn, Mo, and Ru) 1D chains with both ferroelectric (FE) and ferromagnetic (FM) properties is designed. Compared to individual U2C@Ih(7)‐C80, the spontaneous polarization (Ps) in 1D chains is enhanced by about two to four times owing to the interaction between U2C@Ih(7)‐C80 fullerene and M (M = Cr, Mn, Mo, and Ru) atoms. Meanwhile, the introduction of transition metal atoms dopes electrons into U's 5f orbitals, leading to numerous intriguing magnetic properties, such as U2C@C80‐Cr and U2C@C80‐Mo as 1D ferromagnetic semiconductors, U2C@C80‐Ru as 1D ferrimagnetic (FiM) semiconductor, and U2C@C80‐Mn as 1D antiferromagnetic (AFM) semiconductor. Excitingly, it is found that magnetic ordering and electrical polarization can be modulated independently by linking different transition metal atoms. These findings not only broaden the range of 1D multiferroic materials, but also provide promising candidates for novel electronic and spintronic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.