Poly(vinyl chloride) (PVC) is a widely used plastics in different industries. It is an intrinsically hard and brittle polymer and requires the use of plasticizers to improve the processability. Commonly used phthalate‐based plasticizers have serious toxicity issues and we present alternatives based on epoxidized soybean oil (ESO) and epoxidized cardanol esters (ECEs). ECEs are synthesized from cardanol and three fatty acids (oleic, ricinoleic, and myristic) using 1‐ethyl‐3‐(3‐dimethylaminopropyl) carbodiimide (EDC) as a coupling agent. Their structure and purity are confirmed by Fourier transform infrared spectroscopy (FTIR) and Nuclear magnetic resonance. Moreover, plasticized PVC films are prepared using a solvent‐free method. The replacement of 10 phr of ESO with 5 phr of ECE improves the plasticizing power due to the co‐solvency effect. Mechanical properties and thermal stability of plasticized PVC films are correlated with the chain length and the number of epoxy groups in ECE. The best plasticizing effect is observed for epoxidized cardanol‐myristate (ECD‐MA). ECD‐MA as a shorter‐chain secondary plasticizer is more compatible with ESO and allows higher conformational mobility of PVC chains. PVC/30ESO/5ECD‐MA polymer exhibits an exceptionally high initial thermal decomposition temperature (314.4°C) while preserving moderate ductility and tensile strength (263.4% and 23.3 MPa). Overall, this study highlights the potential applicability of ECD‐MA in combination with ESO as a sustainable, bio‐based plasticizer and heat stabilizer for flexible PVC products.
The poly(butylene adipate-co-terephthalate) (PBAT)/thermoplastic starch (TPS) film stands out owing to its acceptable price, low impact on the environment, and excellent mechanical properties. The main objective of this study was to improve the antioxidant properties of the PBAT/TPS film by incorporation of quercetin (Q) through the extrusion blow process. Another specific objective was to incorporate the organically modified montmorillonite (OMMT) to prolong the release of Q and improve the poor barrier properties of the PBAT/TPS/Q film. The films were analyzed in terms of their morphology, mechanical properties, gas and water barrier properties, and antioxidant and anti-UV properties. Optimization of the OMMT content resulted in a fiber-like, co-continuous morphology of the PBAT/TPS/ Q film. The incorporation of quercetin enhanced the antioxidant and anti-UV properties of the PBAT/TPS film, while OMMT improved the mechanical properties, ultraviolet barriers, and gas and water barrier properties. The results show that the films incorporating Q and OMMT provided the oxygen and water barrier by up to 94 and 54%, respectively. Also, the amount of polymer required for 50% 2,2-diphenyl-1-picrylhydrazyl (DPPH) inhibition is as low as 0.03 g, and the UV transmission rate was reduced by about 50%. Moreover, PBAT/TPS/Q/OMMT films successfully delayed the decay of the banana and blueberry due to their excellent antioxidant properties and suitable water vapor permeability.
Brittleness of poly(lactic acid) (PLA), a biocompatible and biodegradable polymer obtained from renewable and natural sources, hinders its widespread applications. This study provides a convenient and economical way to enhance the toughness of PLA by using hydroxyl terminated polybutadiene (HTPB) liq-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.