A Rydberg atom-based mixer has opened up a new method to characterize microwave electric fields such as the precise measurement of their phase and strength. This study further demonstrates, theoretically and experimentally, a method to accurately measure the polarization of a microwave electric field based on a Rydberg atom-based mixer. The results show that the amplitude of the beat note changes with the polarization of the microwave electric field in a period of 180 degrees, and in the linear region a polarization resolution better than 0.5 degree can be easily obtained which reaches the best level by a Rydberg atomic sensor. More interestingly, the mixer-based measurements are immune to the polarization of the light field that forms the Rydberg EIT. This method considerably simplifies theoretical analysis and the experimental system required for measuring microwave polarization using Rydberg atoms and is of interest in microwave sensing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.