Objective Previous studies regarding the quantitative sensory testing are inconsistent in migraine. We hypothesized that the quantitative sensory testing results were influenced by headache frequency or migraine phase. Methods This study recruited chronic and episodic migraine patients as well as healthy controls. Participants underwent quantitative sensory testing, including heat, cold, and mechanical punctate pain thresholds at the supraorbital area (V1 dermatome) and the forearm (T1 dermatome). Prospective headache diaries were used for headache frequency and migraine phase when quantitative sensory testing was performed. Results Twenty-eight chronic migraine, 64 episodic migraine and 32 healthy controls completed the study. Significant higher mechanical punctate pain thresholds were found in episodic migraine but not chronic migraine when compared with healthy controls. The mechanical punctate pain thresholds decreased as headache frequency increased then nadired. In episodic migraine, mechanical punctate pain thresholds were highest ( p < 0.05) in those in the interictal phase and declined when approaching the ictal phase in both V1 and T1 dermatomes. Linear regression analyses showed that in those with episodic migraine, headache frequency and phase were independently associated with mechanical punctate pain thresholds and accounted for 29.7% and 38.9% of the variance in V1 ( p = 0.003) and T1 ( p < 0.001) respectively. Of note, unlike mechanical punctate pain thresholds, our study did not demonstrate similar findings for heat pain thresholds and cold pain thresholds in migraine. Conclusion Our study provides new insights into the dynamic changes of quantitative sensory testing, especially mechanical punctate pain thresholds in patients with migraine. Mechanical punctate pain thresholds vary depending on headache frequency and migraine phase, providing an explanation for the inconsistency across studies.
Background and Purpose— Reversible cerebral vasoconstriction syndrome (RCVS) has a unique temporal course of vasoconstriction. Blood-brain barrier (BBB) breakdown is part of the pathophysiology of RCVS, but its temporal course is unknown. We aimed to investigate the temporal profile of BBB breakdown and relevant clinical profiles in a large sample size. Methods— In this prospective observatory bicenter study, patients who underwent contrast-enhanced fluid-attenuated inversion recovery magnetic resonance imaging within 2 months from onset were included. The presence and extent of BBB breakdown were evaluated using contrast-enhanced fluid-attenuated inversion recovery magnetic resonance imaging. Contrast-enhanced fluid-attenuated inversion recovery magnetic resonance imaging data were analyzed using a semiautomated segmentation technique to quantitatively measure the area of Gadolinium leakage into cerebrospinal fluid space. The univariable and multivariable linear regressions were performed to investigate the independent effect of time from onset with adjustment for other covariates. Results— In the 186 patients with angiogram-proven RCVS included in this analysis, BBB breakdown was observed in 52.6%, 56.8%, 30.3%, 40.0%, and 23.8% in the first, second, third, fourth, and ≥fifth week after onset. The extent of BBB breakdown peaked at first and second week, whereas the peak of vasoconstriction was observed at the third week after onset. Multivariable analysis showed the second week from onset (β, 3.35 [95% CI, 0.07–6.64]; P =0.046) and blood pressure surge (β, 3.84 [95% CI, 1.75–5.92]; P <0.001) were independently associated with a greater extent of BBB breakdown. A synergistic effect of time from onset and blood pressure surge was found ( P for interaction=0.006). Conclusions— Frequency and extent of BBB breakdown are more prominent during the early stage in patients with RCVS, with an earlier peak than that of vasoconstriction. The temporal course of BBB breakdown may provide a pathophysiologic background of the temporal course of neurological complications of RCVS.
Background: Many single nucleotide polymorphisms (SNPs) have been reported to be associated with migraine susceptibility. However, evidences for their associations with migraine endophenotypes or subtypes are scarce. We aimed to investigate the associations of pre-identified migraine susceptibility loci in Taiwanese with migraine endophenotypes or subtypes, including chronic migraine and allodynia. Methods: The associations of six SNPs identified from our previous study, including TRPM8 rs10166942, LRP1 rs1172113, DLG2 rs655484, GFRA1 rs3781545, UPP2 rs7565931, and GPR39 rs10803531, and migraine endophenotypes, including chronic migraine and allodynia were tested. Significant associations in the discovery cohort were validated in the replication cohort. The adjusted odds ratios (aOR) were calculated after controlling for confounders.Results: In total, 1904 patients (mean age 37.5 ± 12.2 years old, female ratio: 77.7%) including 1077 in the discovery cohort and 827 in the replication cohort were recruited. Of them, 584 (30.7%) had chronic migraine. Of the 6 investigated SNPs, TRPM8 rs10166942 T allele-carrying patients were more likely to have chronic migraine than non-T allele carriers in both discovery and replication cohorts and combined samples (33.7% vs. 25.8%, p = 0.004, aOR = 1.62). In addition, T allele carriers reported more allodynic symptoms than non-T allele carriers (3.5 ± 3.7 vs. 2.6 ± 2.8, p < 0.001). However, allodynia severity did not differ between episodic and chronic migraine patients. No further correlations between genetic variants and endophenotypes were noted for the other SNPs. Conclusions: TRPM8 may contribute to the pathogenesis of chronic migraine. However, our study did not support allodynia as a link between them. The underlying mechanisms deserve further investigations.
Background Chronic headache may persist after the remission of reversible cerebral vasoconstriction syndrome (RCVS) in some patients. We aimed to investigate the prevalence, characteristics, risk factors, and the impact of post-RCVS headache. Methods We prospectively recruited patients with RCVS and collected their baseline demographics, including psychological distress measured by Hospital Anxiety and Depression scale. We evaluated whether the patients developed post-RCVS headache 3 months after RCVS onset. The manifestations of post-RCVS headache and headache-related disability measured by Migraine Disability Assessment (MIDAS) scores were recorded. Results From 2017 to 2019, 134 patients with RCVS were recruited, of whom, 123 finished follow-up interviews (response rate 91.8%). Sixty (48.8%) patients had post-RCVS headache. Migrainous features were common in post-RCVS headache. Post-RCVS headache caused moderate-to-severe headache-related disability (MIDAS score > 10) in seven (11.7%) patients. Higher anxiety level (odds ratio 1.21, p = 0.009) and a history of migraine (odds ratio 2.59, p = 0.049) are associated with post-RCVS headache. Survival analysis estimated that 50% post-RCVS headache would recover in 389 days (95% confidence interval: 198.5–579) after disease onset. Conclusions Post-RCVS headache is common, affecting half of patients and being disabling in one-tenth. Higher anxiety level and migraine history are risk factors. Half of the patients with post-RCVS headache would recover in about a year.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.