Curcumin, a constituent of the turmeric plant, has antitumor, anti-inflammatory, and antioxidative effects, but its effects on wound healing are unclear. We created back wounds in 72 mice and treated them with or without topical curcumin (0.2 mg/mL) in Pluronic F127 gel (20%) daily for 3, 5, 7, 9, and 12 days. Healing in wounds was evaluated from gross appearance, microscopically by haematoxylin and eosin staining, by immunohistochemistry for tumour necrosis factor alpha and alpha smooth muscle actin, and by polymerase chain reaction amplification of mRNA expression levels. Treatment caused fast wound closure with well-formed granulation tissue dominated by collagen deposition and regenerating epithelium. Curcumin increased the levels of tumour necrosis factor alpha mRNA and protein in the early phase of healing, which then decreased significantly. However, these levels remained high in controls. Levels of collagen were significantly higher in curcumin-treated wounds. Immunohistochemical staining for alpha smooth muscle actin was increased in curcumin-treated mice on days 7 and 12. Curcumin treatment significantly suppressed matrix metallopeptidase-9 and stimulated alpha smooth muscle levels in tumour necrosis factor alpha-treated fibroblasts via nuclear factor kappa B signalling. Thus, topical curcumin accelerated wound healing in mice by regulating the levels of various cytokines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.