Loss of the maintenance of genetic material is a critical step leading to tumorigenesis. It was reported that overexpression of Aurora-A and the constitutive activation of the epidermal growth factor (EGF) receptor (EGFR) are implicated in chromosome instability. In this study, we examined that when cells treated with EGF result in centrosome amplification and microtubule disorder, which are critical for genetic instability. Interestingly, the expression of Aurora-A was also increased by EGF stimulus. An immunofluorescence assay indicated that EGF can induce the nuclear translocation of EGFR. Chromatin immunoprecipitation (ChIP) and re-ChIP assays showed significant EGF-induced recruitment of nuclear EGFR and signal transducer and activator of transcription 5 (STAT5) to the Aurora-A promoter. A co-immunoprecipitation assay further demonstrated that EGF induces nuclear interaction between EGFR and STAT5. A small interfering (si)RNA knockdown assay also showed that EGFR and STAT5 are indeed involved in EGF-increased Aurora-A gene expression. Altogether, this study proposes that the nuclear EGFR associates with STAT5 to bind and increase Aurora-A gene expression, which ultimately may lead to chromosome instability and tumorigenesis. The results also provide a novel linkage between the EGFR signaling pathway and overexpression of Aurora-A in tumorigenesis and chromosome instability.
A more thorough understanding of the differences in DNA methylation (DNAm) profiles in populations may hold promise for identifying molecular mechanisms through which genetic and environmental factors jointly contribute to human diseases. Inflammation is a key molecular mechanism underlying several chronic diseases including cardiovascular disease, and it affects DNAm profile on both global and locus-specific levels. To understand the impact of inflammation on the DNAm of the human genome, we investigated DNAm profiles of peripheral blood leukocytes from 966 African American participants in the Genetic Epidemiology Network of Arteriopathy (GENOA) study. By testing the association of DNAm sites on CpG islands of over 14,000 genes with C-reactive protein (CRP), an inflammatory biomarker of cardiovascular disease, we identified 257 DNAm sites in 240 genes significantly associated with serum levels of CRP adjusted for age, sex, body mass index and smoking status, and corrected for multiple testing. Of the significantly associated DNAm sites, 80.5% were hypomethylated with higher CRP levels. The most significant Gene Ontology terms enriched in the genes associated with the CRP levels were immune system process, immune response, defense response, response to stimulus, and response to stress, which are all linked to the functions of leukocytes. While the CRP-associated DNAm may be cell-type specific, understanding the DNAm association with CRP in peripheral blood leukocytes of multi-ethnic populations can assist in unveiling the molecular mechanism of how the process of inflammation affects the risks of developing common disease through epigenetic modifications.
Objective Inflammatory response plays an important role in Parkinson’s disease (PD). Previous studies have reported an association between human leukocyte antigen (HLA)-DRB1 and the risk of PD. There has also been growing interest in investigating whether inflammation-related genes interact with environmental factors such as smoking to influence PD risk. We performed a pooled analysis of the interaction between HLA-DRB1 and smoking in PD in three population-based case-control studies from Denmark and France. Methods We included 2,056 cases and 2,723 controls from three PD studies (Denmark, France) that obtained information on smoking through interviews. Genotyping of the rs660895 polymorphism in the HLA-DRB1 region was based on saliva or blood DNA samples. To assess interactions, we used logistic regression with product terms between rs660895 and smoking. We performed random-effects meta-analysis of marginal associations and interactions. Results Both carrying rs660895-G (AG vs. AA: OR= 0.81; GG vs. AA: OR= 0.56; p-trend=0.003) and ever smoking (OR=0.56, p<0.001) were inversely associated with PD. A multiplicative interaction was observed between rs660895 and smoking using codominant, additive (interaction parameter=1.37, p=0.005), and dominant (interaction parameter=1.54, p=0.001) genetic models without any heterogeneity (I2=0.0%): the inverse association of rs660895-(AG+GG) with PD seen in never smokers (OR=0.64, p<0.001) disappeared among ever smokers (OR=1.00, p=0.99). Similar interactions were observed when we investigated light and heavy smokers separately. Interpretation Our study provides the first evidence that smoking modifies the previously reported inverse association of rs660895-G with PD, and suggests that smoking and HLA-DRB1 are involved in common pathways, possibly related to neuroinflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.