Even with substantial advances in cardiovascular therapy, the morbidity and mortality rates of diabetic cardiomyopathy (DCM) continually increase. Hence, a feasible therapeutic approach is urgently needed. Objectives. This work is aimed at systemically reviewing literature and addressing cell targets in DCM through the possible cardioprotection of G. lucidum through its antioxidant effects by using the Open Targets Platform (OTP) website. Methods. The OTP website version of 19.11 was accessed in December 2019 to identify the studies in DCM involving G. lucidum. Results. Among the 157 cell targets associated with DCM, the mammalian target of rapamycin (mTOR) was shared by all evidence, drug, and text mining data with 0.08 score association. mTOR also had the highest score association 0.1 with autophagy in DCM. Among the 1731 studies of indexed PubMed articles on G. lucidum published between 1985 and 2019, 33 addressed the antioxidant effects of G. lucidum and its molecular signal pathways involving oxidative stress and therefore were included in the current work. Conclusion. mTOR is one of the targets by DCM and can be inhibited by the antioxidative properties of G. lucidum directly via scavenging radicals and indirectly via modulating mTOR signal pathways such as Wnt signaling pathway, Erk1/2 signaling, and NF-κB pathways.
Ganoderma lucidum polysaccharides (GLP) have renal protection effect but there was no study on the diabetic nephropathy. This study was designed to investigate its effect and mechanism using a diabetic rat model induced by streptozotocin (50 mg/kg, i.p.). The diabetic rats were treated with GLP (300 mg/kg/day) for 10 weeks. The blood glucose, glycated hemoglobin, body weight, and the levels of blood creatinine, urea nitrogen, and urine protein were assessed. And renal pathologies were assessed by the tissue sections stained with hematoxylin-eosin, Masson’s trichome, and periodic acid-Schiff. The expression of phosphorylated phosphoinositide 3 kinase (p-PI3K), phosphorylated protein kinase B (p-Akt), and phosphorylated mammalian target of rapamycin (p-mTOR), the autophagy proteins beclin-1, LC3-II, LC3-I, and P62; the apoptosis-related proteins caspase-3 and caspase-9; and the inflammation markers IL-6, IL-1β, and TNF-ɑ were assessed. Results showed that GLP alleviated the impairment of renal function by reducing urinary protein excretion and the blood creatinine level and ameliorated diabetic nephropathy. The expression of p-PI3K, p-Akt, and p-mTOR in the diabetic kidney were significantly reduced in the GLP treatment group compared to the without treatment group. GLP treatment activated the autophagy indicators of beclin-1 and the ratio of LC3-II/LC3-I but reduced p62 and also inhibited the expression of caspase-3, caspase-9 and IL-6, IL-1β, and TNF-ɑ. In conclusion, the effect of GLP amelioration diabetic nephropathy may be via the PI3k/Akt/mTOR signaling pathway by inhibition of the apoptosis and inflammation and activation of the autophagy process.
Aim: The study aims to evaluate protective effects of sophoricoside (Sop) on cardiac hypertrophy. Meanwhile, The potential and significance of clinical transformation of Sop should be broadened and it should be firmly supported as an attractive drug for the treatment of pathological cardiac hypertrophy and heart failure. Methods: Using the phenylephrine (PE)-induced neonatal rat cardiomyocytes (NRCMs) hypertrophy model, the potent protection of Sop against cardiomyocytes enlargement was evaluated. The function of Sop was validated in mice received transverse aortic coarctation (TAC) or sham surgery. At one week after TAC surgery, mice were treated with Sop for the following 4 weeks, the hearts were harvested after echocardiography examination.Results: Our study revealed that Sop significantly mitigated TAC-induced heart dysfunction, cardiomyocyte hypertrophy and cardiac fibrosis. Mechanistically, Sop treatment induced a remarkable activation of AMPK/mTORC1-autophagy cascade following sustained hypertrophic stimulated. Importantly, the protective effect of Sop was largely abolished by the AMPKα inhibitor Compound C, suggesting an AMPK activation-dependent manner of Sop function on suppressing pathological cardiac hypertrophy. Conclusion: Sop ameliorates cardiac hypertrophy by activating AMPK/mTORC1-mediated autophagy. Hence, Sop might be an attractive candidate for the treatment of pathological cardiac hypertrophy and heart failure.
Background Ganoderma lucidum spores (GLS) exhibit disease prevention properties, but no study has been carried out on the anti-diabetic cardiomyopathy property of GLS. The aim of this study was to evaluate the hyperglycemia-mediated cardiomyopathy protection and mechanisms of GLS in streptozotocin (STZ)induced diabetic rats. Methods Male SD rats were randomly divided into three groups. Two groups were given STZ (50 mg/kg, i.p.) treatment and when their fasting plasma glucose was above 16.7 mmol/L, among them, one group was given placebo, as diabetic group, and another group was given GLS (300 mg/kg) treatment. The group without STZ treatment was given placebo as a control group. The experiment lasted 70 days. The histology of myocardium and biomarkers of antioxidants, myocardial injury, pro-inflammatory cytokines, pro-apoptotic proteins and phosphorylation of key proteins in PI3K/AKT pathway were assessed. Results Biochemical analysis showed that GLS treatment significantly reduced the blood glucose (−20.3%) and triglyceride (−20.4%) levels compared to diabetic group without treatment. GLS treatment decreased the content of MDA (−25.6%) and activity of lactate dehydrogenase (−18.9%) but increased the activity of GSH-Px (65.4%). Western blot analysis showed that GLS treatment reduced the expression of both alpha-smooth muscle actin and brain natriuretic peptide. Histological analysis on the cardiac tissue micrographs showed that GLS treatment reduced collagen fibrosis and glycogen reactivity in myocardium. Both Western blot and immunohistochemistry analyses showed that GLS treatment decreased the expression levels of pro-inflammatory factors (cytokines IL-1β, and TNF-α) as well as apoptosis regulatory proteins (Bax, caspase-3 and −9), but increased Bcl-2. Moreover, GLS treatment significantly increased the phosphorylation of key proteins involved in PI3K/AKT pathway, eg, p-AKT p-PI3K and mTOR. Conclusion The results indicated that GLS treatment alleviates diabetic cardiomyopathy by reducing hyperglycemia, oxidative stress, inflammation, apoptosis and further attenuating the fibrosis and myocardial dysfunction induced by STZ through stimulation of the PI3K/Akt/mTOR signaling pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.