In this study, we prepared DPPBTDA, a diketopyrrolopyrrole-based small molecule presenting a terminal cross-linkable azido group, as a cathode modifying layer for organic photovoltaics (OPVs) having the inverted device structure glass/indium tin oxide/zinc oxide (ZnO) with or without the interfacial layer (IFL)/active layer/MoO/Ag. The active layer comprising a blend of poly[4,8-bis(5-(2-ethylhexyl)thien-2-yl)benzo[1,2- b;4,5- b']dithiophene-2,6-diyl- alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4- b]thiophene)-2-carboxylate-2,6-diyl] (PTB7-Th) as the electron donor and [6,6]-phenyl-C-butyric acid methyl ester (PCBM) as the electron acceptor. Atomic force microscopy, space-charge-limited current mobility, surface energy, electron spectroscopy for chemical analysis depth profile, ultraviolet photoelectron spectroscopy analysis, and OPV performance data revealed that the surface status of ZnO changed after inserting the DPPBTDA/PCBM hybrid IFL and induced an optimized blend morphology, having a preferred gradient distribution of the conjugated polymer and PCBM, for efficient carrier transport. The power conversion efficiency (AM 1.5 G, 1000 W m) of the device incorporating the hybrid IFL increased to 9.4 ± 0.11% from 8.5 ± 0.15% for the preoptimized PTB7-Th/PCBM device (primarily because of an enhancement in the fill factor from 68.7 ± 1.1 to 72.1 ± 0.8%).
In this study, we developed a star-shaped diketopyrrolopyrrole (DPP)-based additive as an efficient morphology fixing agent for organic photovoltaics (OPVs). This conjugated small molecule, DPPTPTA, has four arms, with two terphenyl units and four alkyl azide groups. We tested the behavior of DPPTPTA after incorporating it into an active layer comprising poly[4,8-bis(5-(2-ethylhexyl)thien-2-yl)benzo[1,2-b;4,5-b′]dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene)-2-carboxylate-2,6-diyl)] (PTB7-Th) and the PC61BM fullerene. Atomic force microscopy, UV–vis spectroscopy, optical microscopy, photoluminescence (PL) spectroscopy, and an X-ray photoelectron spectroscopy (XPS) depth profile revealed the effects of the resulting morphological change on the device performance and thermal stability. Compared with the PTB7-Th:PC61BM device prepared without DPPTPTA, the device incorporating this additive exhibited an increase in the power conversion efficiency (from 6.7 to 8.2%) and improved thermal stability. DPPTPTA served as a multifunctional additive, providing ladderlike energy levels for efficient charge separation, altering the morphology of the blend film for improved performance and suppressing the large-scale crystallization of PCBM (only a few fullerene crystals appeared in the active layer after holding the blend film at 150 °C for 18 h) by constructing local borders, ensuring long-term thermal stability. In contrast, the pristine device did not function after accelerated heating. Furthermore, the DPPTPTA-derived blend film displayed excellent solvent resistance and specific selective reactivity, as observed using FTIR and UV–vis spectroscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.